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Theory of the lattice Boltzmann method: Three-dimensional model for linear viscoelastic fluids
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A three-dimensional lattice Boltzmann model with thirty two discrete velocity distribution functions for
viscoelastic fluid is presented in this work. The model is based upon the generalized lattice Boltzmann equation
constructed in moment space. The nonlinear equilibria of the model have a number of coupling constants that
are free parameters. The dispersion equation of the model is analyzed under various conditions to obtain the
constraints on the free parameters such that the model satisfies isotropy and Galilean invariance. The macro-
scopic equations are also derived from the lattice Boltzmann model through the dispersion equation analysis
and the Chapman-Enskog analysis. We demonstrate that the dispersion equation analysis can be used as a
general and effective means to derive hydrodynamic equations, excluding some nonlinear source terms, from
the lattice Boltzmann model, to obtain conditions for its isotropy and Galilean invariance, and to optimize its
stability. We show that the hydrodynamic behavior of the lattice Boltzmann model has memory effects, and
that in the linear regime, it behaves as a viscoelastic fluid described by the Jeffreys model. Some numerical
results to verify the theoretical analysis of the model are also presented.
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I. INTRODUCTION “particles.” The collision rules are designed to mimic the
interparticle interactions in a real fluid. Once the system is
More than a decade ago, the lattice Boltzmann equatiospecified, standard techniques in kinetic theory and statistical
(LBE) [1-9] was introduced as a generalization of the latticemechanics, such as Chapman-Enskog analysis, can be ap-
gas automat@10-17 intended as a new and possibly effi- plied to derive macroscopic equations for the quantities that
cient alternative method to simulate fluid flows on parallelare slow in temporal scale and gradual in spatial scale, rela-
computers. The general principle of the lattice Boltzmannive to the elemental time stefy and the lattice constant of
equation is to consider particles moving synchronously alonghe lattice space’,, respectively, that is, in the hydrody-
the links of a highly symmetric lattice, and the dynamics ofnamic regime. With desirable physical properties incorpo-

the system is fully discrete. The evolution of the LBE systemrated, the LBE models can be designed to simulate various
at each discrete time step includes two parts: displacementmple as well as complex fluids.

and some modeled collisions that lead to a redistribution of The goal of the present work is to construct a three-
particle populations according to some rules. The state of thgimensional LBE model for viscoelastic fluids. The precise
system is defined by the values of the particle populations &hicroscopic mechanisms that lead to non-Newtonian behav-
each lattice node. In a way, this amounts to replacing theor in real fluids are still not fully understood, but there exist
usual single-particle distributiofi(r,£,t) considered in the many phenomenological models that mimic these fluids. The
continuous Boltzmann equation of statistical mechanics byeneral idea in those phenomenological models is that mol-
the set{f,(r;,t,)|a=0,1,2...,(N-1)}, whereN is the  ecules of the fluid either organize at small scétuctural
number of discrete velocities. The quantitf,(rj,t,)  relaxation or have internal degrees of freedom, which can be
=f(r;,&,.tn) is the single-particle distribution function of affected by the local state of the fluigiue to stress, for
discrete velocity,, on a lattice space;, and at discrete instancg. Here we shall consider the paradigm of molecular
timet,. The lattice space=jl;+],l,+]sls is represented reorientation in which distortions of angular distribution
by integer coordinatesj{,j,,j3), and the basis vectols, functions can relax to uniform distribution.
l,, andls; and discrete timé,=ns;, wherene{0,1, ...} The essential physics of viscoelasticity in non-Newtonian
and é; is the time step size. fluids is the interplay between hydrodynamics and the local
To define an LBE model, several key elements need to beelaxation dynamics due to internal degrees of freedom of
specified:(1) the lattice space and a set of discrete velocitiesfluid particles. Although the exact microscopic mechanisms
and (2) the collision rules for the redistribution of fictitious of this interplay may be unknown, it would not prevent us
from constructing a model that possesses adeqlzatge
scale properties of non-Newtonian fluids. We only require
*Electronic address: lalleman@asci.fr that the relaxation time scales due to internal degrees of free-
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needed in the definition of nondimensional parameterg.,  isotropic, then such fluids can exhibit the phenomenon of

Reynolds number Re and Deborah number De) etinsid-  flow birefringence). The corresponding anisotropic angular

ered in numerical simulations by using the model accordinglistortion can relax towards an equilibrium of isotropic dis-

to the similarity principle of hydrodynamics. tribution with a relaxation timer, and this relaxation gives
The LBE model presented here is an extension of theise to a(complex frequency-dependent shear viscosity for a

generalized lattice Boltzmann equation by d’Hure®[13] periodic flow with frequencyw:

and a two-dimensional LBE model for viscoelastic fluids

[14,15. To construct a three-dimensional LBE model for (Vo= Vw)

athermal viscoelastic fluids, we incorporate a symmetric V:Voc+m ' @

traceless stress tensor to mimic the effect due to internal

degrges of freedom 01_‘ _fluiq particles. The stress-tensor-Iikg\,herey0 anduv.,

guasiconserved quantities in the model have the same sym

metry as the viscous stress tensor and couple other “fast,

kinetic modes to hydrodynamiggiscous stress tensdrl6].

We demonstrate that the LBE model presented here c

simulate viscoelastic fluids described by Jeffreys moii€].

Although the proposed model is similar to an earlier two-

dimensional LBE model for viscoelastic fluid44,15, the ; : . o w : » :
. X R . _pressed like a little spring. This “elongational” type of dis-
method to analyze the LBE model is entirely different, Wh'le.tortion will not be considered here as it would require taking

most previous work relies on the Chapman-Enskog analysig, . 2 ccount internal degrees of freedom with symmetry dif-

to obtain the hydrodynamic equations from the LBE modelse et from what is discussed here. The effects on fluid prop-
[14,15, we analyze the dispersion equation of the model to

. i : ) erties due to the presence of the angular distortion are the
derive the hydrodynamic equatiofit8]. The analysis of the subject of the present work.

dispersion equation of the LBE system enables us to opti-
mize the isotropy of transport coefficients. It also allows us

are the viscosities at the limits af—0 and
w—, respectively. From here on, zero- or low-frequency
limit means the evolution time scales are slow relative to the
relaxation time of the system, whereasor high-frequency
%imit means the evolution time scales are fast relative to the
relaxation time of the system. Second, in addition to the
angular distortion, the particles can also be stretched or com-

to improve the linear stability of the model, which is beyond A. Brief description of the model
the capability of the standard Chapman-Enskog analysis As in other lattice Boltzmann models, we are going to
as the unstable modes have very short wavelengths. greatly simplify the description of molecular motions of real

The paper is organized as follows. Section Il describes théluids. We shall reduce the phase space available to particles.
three-dimensional LBE model for viscoelastic fluids and pre-The lattice space used here is a simple three-dimensional
sents the model with linear equilibria in moment sppb@.  cubic lattice space. In the following analysis, we shall use
Section Ill considers the dispersion equation of the linearizeghormalizations such that the lattice constaptand the time
collision operator, and obtains the hydrodynamic modes instep sizes, are set to be unity, so that quantities involving
both low- and high-frequency limits. Transport coefficientsspatial and temporal scales become dimensionless.

(wave speeds and attenuation coefficients of waaes ob- The discrete velocity sdie,} is chosen as the following:
tained as the roots of the linearized dispersion equation. Vari-

ous conditions between coupling coefficients and relaxation (0,0,0, a=0
parameters in the model are derived by enforcing isotropy of (+1,+1,0), (0,=1,+1), (£1,0+1), a=1-12
the transport coefficients. The theoretical results of the transe =

port coefficients are verified numerically. Section IV extends (£1x1,+1), a=13-20
the model to include nonlinear terms in the equilibria and (*£2,0,0, (0,=2,0), (0,0+2), a=21-26.
derives the conditions under which the model is Galilean 2

invariant. Section V explicitly derives the macroscofiiy-

drodynami¢ equations of the LBE model. The model can The discrete velocity, is in the unit ofc=68,/5,=1. The
simulate Jeffreys as well as Maxwell model of viscoelasticset of the above 27 discrete velocities is the minimal one to
fluids. Finally, Sec. VIl indicates possible extensions of theobtain the required viscoelastic fluid properties. It should be
model and summarizes the present work. We also includaoted that the velocities of speed 2 are chosen instead of that
two appendixes to provide a summary of all the adjustablef speed 1 in the standard 27-velocity LBE model because of
coefficients in the modelAppendix A needed to perform a some symmetry constraints, which are discussed in the fol-
computer simulation and the transport coefficients of thdowing analysis.

model (Appendix B. In order to model the angular distortion of particles, a
symmetric traceless second-order stress tensor is introduced
in the LBE model. This tensor in three-dimensional space
can be represented by a set of five numbers:

We consider the specific case of a real viscoelastic fluid .
made of nonspherical particles or molecules. The state of  (f27,f28,f29,F30,f30) = (Ml My, My, Myz, M35,

Il. THREE-DIMENSIONAL VISCOELASTIC LBE MODEL

these particles can be distorted in various ways. First, their (33
angular distribution can be distorted when subjected to an
applied stress(If the optical properties of particles are an- e,=(0,0,0, «a=27-31, (3b)
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which are considered as five additional distribution functions B. Mapping between the velocity and moment space
of zero particle velocity, and thus do not propagate. The .o N distribution functions{fla=0,1, ... ,N—1)},
stress tensor specified lﬁyn;‘x, .. .,M,,¢ models the aniso- 5, equal number of moment{sga|ocz(= 1,2,... N}, can be
tropic effects due to the internal degrees of freedom of pargonstructed without gaining or losing any information. How-
ticles, which are responsible for viscoelastic behaviors of &yer, the moments do have clear physical significance in the
non-Newtonian fluid. Note that the traceless constraintgopiext of hydrodynamics, because they can be chosen as
breaks the symmetry of the diagonal elements of the tensobhysical observables such as density, momentum, energy,
this is the reason why we have introduced the eIemenétreSS, fluxes, etc. For this reason, moment spéce&! is
My =(Myy—Mm,;), such that my,=(my,—My)/2 and  chosen instead of the discrete velocity spaceRN to con-
M, = — (Myw+ My,)/2, wherem,,=m,/3 and the factor 3 giryct the LBE model, following the idea of the generalized
originates from the projections chosen in Eqs7h and  |attice Boltzmann equation due to d’Humés[13]. The LBE
(170. In what follows, we shall use the subscripv to  model constructed in moment spadencludes a number of
denote the difference between the last two diagonal eleagjustable parameters, the values of these parameters are var-
ments. ied to optimize the physical properties of the mofdis]. As

The state of the model is therefore SpeCified at each nodﬁ has been showh]_8], moment representation of the lattice
of the latticer;, and at timet=n, by a set of 32 distribution  Boltzmann equation is better suited to model various colli-

functions: sion mechanisms, whereas discrete-velocity representation is
; —(f ¢ ¢ T natural for the advection process—a key feature of the lattice
[f(rj,n)=(Eo(rj.n), fa(rj.n), .. faa(rp.n)' (4 Bojtzmann equation reminiscent of spectral techniques used

in CFD.

whereT is the transpose operator. From here on the Dirac
notations of bra]-), and ket,(-|, vectors are used to de-
noted column and row vectors, respectively.

The evolution equation of the LBE model can be written
in general as the following:

We first define the basis of moment spade and the
linear transformation matrixV that uniquely maps a vector
|f) in discrete velocity spac&CR*? to a vector|@) in mo-
ment spac@ICR%, i.e.,

— —n—1

1+ e n+ D)= [y MY+ QG (), () le)=MI). |P)=M"le). "

For the sake of simplicity, we shall divide into four sub-

spaces according to particle speed, and first consider the

mapping between each subspacé/adnd the corresponding

subspace ofil.

— T Particles with zero velocity have only one single moment

(fo(r+&n+1).fu(rre.ntd), ... ,f31(r+e31,n+1))(6.) of the mass density(?). Therefore, the mapping between the
subspaceé/oCR and the subspacd,CR is an identity ma-

Note thate, =0 for =0, and 27-31. Equatiof®) describes  trix of rank 1, i.e,M@=]=1.

both the advection due to the motions of the particles and the For the next group of 12 particles with speg@ in the

redistribution of the populations due to collisions. velocity subspaceé’;=R'?, we consider the matrix

where() is the collision operator to be discussed later, and

|f(r+e,,n+1))

1 1 1 1 1 1 1 1 1 1 1
1 -1 1-1 0 0 0 0 1 1-1 -1
1 1 -1 -1 1 -1 1-1 0 0 0 0
o o o o0 1 1-1 -1 1 -1 1 -1
1 1 1 1-2 -2 -2 -2 1 1 1 1
1 1 1 1 0 0 0 0-1 -1 -1 -1

M= ®)
1-1-1 1 0 0 O 0 O 0 O O
o 0o o o0 1-1-1 1 0 0 0 O
o 0 o o0 O o0 0 0 1-1 -1 1
-1 1 -1 1 0 0 0 0 1 1-1 -1
1 1 -1-1-1 1-1 1 0 0 0 0©0
o o o o0 1 1-1 -1 -1 1 -1 1

A vector in the subspac¥,,
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|[dWYy=(f,, ...
is mapped to a vector in the corresponding subspégcef M,

W)= MDDy = (pM,j 1) jB jD o

wherep(® is the mass density(”, j{V, j{V are three com-
ponents of the momentuntmass fluy, p{%/3, (3p{:),
pG)16, —(3pS+pi)/6, psy). plY, and pl}) are the
components of a symmetric traceless stress tensorq%hd
qiM, gV are three third-order momentwith the dimension
of a flux of energy.
Similarly, for the eight distribution functions ik, for the

particles with speed/3, the following matrix:

1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 1 1 1 -1 -1 -1 -1
M) =
1 -1 -1 1 1 -1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 1 -1 -1 1 -1 1
1 -1 -1 1 -1 1 1 -1
(11
transforms
| D@y =(f13,f14, ..., F20)" (12
into

W (2)) = M@ )
= (p@,j@ j@ j@ @ 5@ 5@ G@)T,
(13

whereq®? is a third-order momerit=c= €, 1€, yEx.2f l-
Finally for six distribution functions ir¥ 5 for the partlcles
with speed 2, we have the transformation matrix

1 1 1 1 1 1

2 - 0 0 0 0
NS 0 0 2 —2 0 0 14
“lo o o o 2 -2 (14

8 8 —4 —4 -4 -4

0 0 4 4 —4 -4

which transforms

| OGN =(f,1,f00, ... ,Toe)T (15

to
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f12)7, (€)

Sy % PR Al it gt T, (10)
|

(16)

There still remain five additional distributionf,, . . ., 34,

to be considered later. So far, only some diagonal blocks of
the transform matrixVl are explicitly given asvM(®, M(®),
M®), andM®), The remaining elements & shall be given
when all the momentgo,} are explicitly constructed in
terms of{f}.

According to the symmetry classes of the model, the fol-
lowing 32 orthogonalmoments can be constructed frdim,}

p=01=pP+pM+p@+p®, (179
e=0,=—8p0—2pM+p@ 1+ 4,0) (170
£1=03=pM—=3p@+2p0), (179
£2=04=6p 0 —pM+p(), (179
jx,y,z:QS,B,ll_Jx32+J§<32+J§<33z: (179
Oxy.2= Ce0.17= — 15+, (17f)
Ny.y,z= 971013_Jx32_2J§<232 l@za (179
Paoc= Q14= P + P+ Cmiy (17h
Exxww= 01517 2pxx wwt g pxx ww s (17i)
Puw=016= Pl Pt DMy, (17)

1 2
pxy,yz,zx: 918,20,22: pg(y?yz,zx—}_ pg(y?yz,zx+ a-mxy,yz,zx:

(17k)

Exy,yz,zx— 19,2125 — Zp)((])./),yz,zx-i_ pg/?yz,zx' (71
Nx,y,z= 024,25 26" Q>(<,13,z , (17m)

ho=027=0q%, (17n)

=006= — [ p{+ p{Y]+216m}, (179

Taw= Q2= —b[PGo+PINI+72my, (17D
Tyyyzzx= 030,31,37~ —al p%/?yz,zx"— pg?yz,zx] + 12mxy,)az7xq)

wherep is the total mass densitgeroth-order momejite is
the energy densitysecond-order moments; and e, are
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energy square densities(fourth-order moment j  Wherec,, is the coupling coefficient betweem, and ¢,

=(jx.y.i2) is the mass flux or momentum densitfjrst- and the summatiox’ includes only the conserved modes,
order moment q=(dy,dy,d,), andp=(7y,7y,,7,) are en- and possibly quasiconserved modes. Specifically, we have
ergy fluxes(third-order moment h=(h,,h, ,h,) andH, are

fluxes of energy squaréifth-order moment pyy, - . ., Pzx e(eq)zlazp, (203
andmy, . .. ,7,y are second-order moments that are related 8

to the components of two second-rank symmetric traceless

stress tensors; ané,,, .. .,e,, are fourth-order moments (eq)_l 20b
that are related to the components of a symmetric and trace- 1 —4a3p ' (20b)

less second-rank tens@products of energy and stress ten-

sorg. Three parameters, b, andc, are introduced to play an (eq)

important role in the new physics mimicked by the LBE € =5 a4p, (200

model coupling the hydrodynamic stress to the stress due to

the internal degrees of freedom of particles. Equatidn 3

fully prescribe all 32 momentse,} in terms of 32 distribu- q(eq)=§clj, (200)

tion functions{f ,}, and thus fully specify the transformation

matrix M and its inversél~ 1. One may note that botk and 1

M~ 1 involve a small number of coefficients so that the trans- hed=Zc,;, (208

formation from distributions to moments anite versacan 2

be efficiently accomplished in the spirit of FFT used in spec- . -

tral techniques in CFD. wherea,, as, ay, Cy, _andcz are coupling coeff|C|ent.s. To
It should be noted that the moments given in E43) are gllow more erx@_hty in the _model fo_r_Iater analysis, we

orthogonal, but they are not normalized. That is, for eachrOOluce an additional coupling coefficient

column vectorigz) and row vectorg,| (which is a trans- 9A2
pose of|g,), and vice versa we have the following or- ef(‘;“)=@(r2—l)pxx, (219
thogonal relationship:
a9 2

(Cdl@p)=(Cal@a) g, (18) i =355 ("~ 1Puw> (21D

whereé, ;4 is the Kronecker delta. where
There are two hydrodynamic stress tensors, the compo-

nents of which are eithep;;} or {;;}, which are coupled to A 1 B 1 (22
the stress tensor din;;} due to the internal degree of free- - (12+a?)’ B (72+b?)

dom. The stress tensor ¢f;;} simulates quasiconserved
modes, whereas that ¢fr;;} mimics fast kinetic modes. The In Egs.(21) defining €, and e,,,,, the isotropy is assumed,
basic physics of viscoelasticity is cast in these stress tensorghich implies the relation between coupling coefficieats
b, andc obtained latefsee Eqgs(46) in Sec. Il C]. All the
equilibria of the moments other than those given in Eg6)
and(21) should then be set to zero at linear level. Obviously,
The choice of the collision operatél is rather arbitrary, the equilibria prescribed by Eq§20) and (21) are not the
provided basic principles of physics are satisfiednserva-  most general ones, given the degree of freedom of the model.
tion of mass and momentum, gtcHowever, this arbitrari- However, the linear equilibria capture the dominant behav-
ness of() can be reduced by considering the linearized latiors of the model, and the nonlinear terms will be considered
tice Boltzmann equatiof2]. later in Sec. IV.
To uniquely define the operatél, we proceed to charac- The relaxation equations of the moments are
terize the collision processes as linear relaxations such that
the moments relax towards an equilibrium state according to 0*=0,—sJ0.,— 0", (23
simple relaxation equations witbonstantrelaxation rates,
and the equilibrium state depends upon the values of some #¢heres, is the relaxation rate for the mome(ar mode ¢, .
the moments. It would be natural to assume that the equilibPecomposing the moments into equilibrium and fluctuation
rium state depends solely upon the conserved quantities—the
mass density and the components of the momenmass 0)=1e*%)+|s0), (24
flux) here. The equation of energy conservation is not con: .
sidered here. Thig would lead toqc)r/le followidignear equi- the effect of the collision step can be expressed as

C. Equilibrium and dynamics of the model

librium distribution functions in general: lo*)=|o)+C| o) (25)
1 . . . - .

e — N/ c ’ 19 whereC is the linearized collision operator. The matfxis
¢ To o 25 (e leyene, (19 mostly diagonal, with the following diagonal elements:
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(0,—S,,—S3,—S4,0,—Sg,—S7,0,—Sg,—S7,0,— S5, — S7, shall use the analysis of dispersion equation in the present
work to study the hydrodynamic behavior of the LBE model.

Sy, S15: 7Sy, S15,~ S, 519, Sy, S19, S, — S19s

—S24,~ S24,~ S24,— S27,~ S28, ~ S28, ~ S30, ~ S30, ~ S30), A. Dispersion equation and its eigenvalue problem

_ _ o We study the behavior of the system subject to an initial

where the symmetries of the lattice spdoe obvious isot-  condition that is the superposition of a uniform equilibrium

ropy) have been taken into account. Among the diagonaktate and a small spatially periodic fluctuation with wave
elements ofC, the four zeros correspond to four conservedyectork, such thak<1:

quantities p, jx, jy, andj,). Note that the relaxation rage

for five components of the stress tensig;;}, is not neces- fo(ry ) =F0+ ¢, (1) 1), (29
sary large(meaning close to 2 in the LBE analykisThe
off-diagonal elements of are given by wheref?) is a spatially uniform and steady equilibrium and

¢.(r;j 1) is the fluctuation. The wavelength of the fluctuation

is large compared to the lattice spacidg(=1). We solve

the linearized dispersion equation to obtain the solutions of

the form expik-r+st) corresponding to the hydrodynamic

The nonzero off-diagonal elements @fin moment spacél ~ modes of the system. o _

are Fourier transform irr; of the linearized evolution equa-
tion of ¢, gives[19,20

(e,le,)
CuySy -
(0alOa) 77

(e.Cle,)= (26)

1
(pICle)=gazs,, (273 Alg(kt+1))=|d(kt)+M ‘CM|d(kD), (30
where advection operatéy is a diagonal matrix:
1 h d i gisadi | i
C = —a,S3, 27h
(p[Cleq) 4 94333 (27b Ans—explie, K)d,. (31)
1 Therefore,
(plClez)=Fauss, 279
|p(k,t+1))=H|p(k,1)), (32)
3
(ilClaiy= 5C1S6. (27d  where the evolution operator
L H=A"1+M CM]. (33
jilClhi)= 5 Cys7, 27
(il Clh) 2727 (279 The eigenvalue problem dfl provides the generalized hy-
drodynamics of the system, i.e., for an eigenvalyeof H,
9A2
<Exx|C|pxx>: %(I’Z—l)SlS, (27 Yo=INN, (34
9A2 allows us to determine wave number dependent phase veloc-
{ €| C| Puow) = %(rZ— 1)Ss. (279 ity and transport coefficient of the system.

Laplace transform of Eq.30) in time leads to the follow-
ing dispersion equation:
In velocity spaceV, Eqg. (25 becomes

defAe’—1-M 1CM]=0. (35)
[f*)=]f)+M~1CM|of). (28
Usually the dispersion equation cannot be solved analyti-
IIl. DISPERSION EQUATION AND HYDRODYNAMIC cally. For smallk ands, we expandA ande® in Taylor series
MODES in k ands, respectively:
There are two approaches to deriving the hydrodynamic Aup=I1+ KO+K@4 ..., (363

behavior of the model(1) the Chapman-Enskog analysis,

modified for the situation of some moderate relaxation rates, 1

to derive macroscopic equations directly from the model K(“)z—(iea~k)”5aﬂ, (36D
[14,15; and (2) analysis of dispersion equations of the “nl

model[18]. Although the Chapman-Enskog procedure is the

conventional means most often used in the LBE analysis, wand consider the dispersion equation lineak iands,
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defMKOM~1-C+sl]=0. (37 and two transverse modes that relax exponentially with a rate
y3k?. The isotropy ofy? implies that the five relaxation

Note that the linearized dispersion equation in effect has onlyates for the momentgp;;} are equal §;), and furthermore
included first-order spatial and temporal derivatives becaustat

it is only first order in bothk ands. As was first demon-

strated by Haon in his analysis of the lattice gas automata

[21], second-order derivatives due to the presence of the lat- _ b2 _

tice should be included in the analysis. It is understood that S28= —S30- (40
the effect of the corresponding second-order derivatives 6a

amounts to a correction of the termss by (15,—1/2).

Therefore, for the sake of simplicity, we can omit second- .

order derivatives in the analysis for now and make the cortnder such conditions, we have

rection later simply by replacing 4/ by (1k,—1/2). We
shall use the following substitution whenever it is appropri-

2
ate: e ) D
YreC (s, 2) T 12ls 2/ (413
1 1 1
= S_ - E (38)
S o
“ 3(4—3c;—c
C%:E#. (41b)
The linearized dispersion equati¢8?) is a polynomial of (12+a%)

degree 32 irs andk=(ky,ky ,k,). Because it is difficult to
compute the roots of the dispersion equation analytically,
even by perturbation technique in the limitlof-0, further  Longitudinal waves have an amplitude that relaxes exponen-
approximation must be made in order to solve BY). We tially with an equivalent damping constant related to

note that in contrast with four conserved quantities, all other
nonconserved quantities relax towards their equilibria with
constant relaxation ratels,}. Therefore, we can consider

1

~ 0_—

1/s,>0 as small parameters, and solve the linearized disper- "To
sion equation correct to the order o6]/under two circum-

4 0
€O+ § ‘}/T) ) (42)
stances. First, assuming the&'s, including’s,, Gaussian

elimination can be used to reduce the size of the determinant 1 Sl 1 1 1
from 32x32 to 4x4 for four hydrodynamic modegtwo ~ $0=| 1+ 5C1=Cs s, 2 = 75(8+36c,—ay) s, 2/
transverse and two longitudinal modeEhis leads to “low- (43
frequency” modes. In effect, all the kinetic modéwmodes

other than the conserved onese treated as “fast modes”

and have to be eliminated. _ where(, is the bulk viscosity. Note at this stage that a sim-
The second approximation considered is thats, ex-  plified analysis involving but one relaxation rate in the LBE

cepts, . In this case, the size of the determinant reduces tenodel, i.e., the lattice Bhatnagar-Gross-KrogkBGK)

9X9 involving five components of the stress tengpy} in model[3,4,22,23,28 could not lead to an isotropic behavior

addition to four conserved quantities. The four conservedinless the particular choice df=a\6 (i.e., Sy;g=Sz0) iS

quantities as well as five quasiconserved quantites, made.(It should be noted that two-dimensional LBE models

are separated from the remaining 23 “fast” modes. In thisin Refs.[22,23 for viscoelastic fluids may not be extended

case, the nine modes are the “high-frequency modes.” Théo three-dimensional space when isotropy and Galilean in-

values of propagating speeds and attenuation rates of variowariance are considered for minimally damped transverse

waves are obtained by solving the dispersion equation. Note/aves)

that from now on, “low” and “high” frequencies are defined

with respect tos,, and that we are in the low-frequency

regime with respect to the 23 fast modes of the system. C. High-frequency modes

We now consider larger values & so thatk<s, no
longer holds, buk<'s, ands,>'s,. As indicated above, the
The reduced form of the dispersion equation to>a44  application of Gaussian elimination reduces the<32 de-
determinant allows us to find two longitudinal modes with terminant in Eq.(35) to a 9X9 determinant involving five
phase velocity components of the stress tensas;}, in addition to four

conserved quantitie®ne p and three components f.
The reduced dispersion equation up to the orddy; afith
9X 9 determinant, is

B. Low-frequency modes

1
cs=1—2 2(62+a,), (39
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iK2kZ

where

S iKy
icck, s
icckk, 0
icck, 0
0 i2kikg —

0
0 iroky Kok,
0
0

i Klky

0 ixik

0 iK2kZ

0

3
K1:§(4+ 7C1+ Cz),

1
K2=§(4_301_Cz),

S
_iKlkZ

_iKlkZ

iK2ky

iKZkX

—i12Bk, i36Bk, i12Ak, i12Ak, 0
~i12Bk, —i36Bk, 0  i12Ak, i12Ak,
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0 0 0 0 0
i24BKk, 0 i12Ak, 0 i12Ak,

s+, 0 0 0 0 =0, (44)

0 S+s, 0 0 0

0 0 s+s, 0 0

0 0 0 s+s, 0

0 0 0 0 S+,

|
c=/3b, (463
(453 4—3c,—cC

_ (4-3ci-cy) ash

9(4+7cqtcCy)

(45D with the above choices af and B, the dispersion equation

(44) has two pairs of roots with opposite speads *c,

andA andB are given by Eq(22). With's, substituted in Eq. @nd one pair of roots with opposite speeds =c, , where

(44) for s,, somek? terms have been included implicitly in
the analysis. The wave vector can be written in spherical

coordinates,

k= (ky,ky ,k;) =k(cos¢ sin6,sin¢ sin 6,cosp).

We are seeking solutions such tlsativk. The propagating
behavior of the model will be isotropic if the wave speeid

independent of the orientation &f i.e., 6 and ¢.

If we assumes,#0, then the leading term ik in the  gating speeds of transverse and longitudinal waves is pre-
dispersion equatiofd4) is of the orderk*. Setting the lead- cisely what is expected in a viscoelastic fI(iz#].
ing term to zero leads to the fO”OWing solutions=0 for Note that the determinant in the dispersion equa('(m)
two diffusive modes(nonpropagating modgsandv==Cs  can be simplified ik is along one of the axe®.g.,x axis).
for two low-frequency acoustic modes.
If we assumes, =0, the leading term is now of the order mation to the determinant. If wave vectois rotated to align
k®. The solution for the wave speed can be made isotropic ifvith x axis, and ifc and B satisfy Eqgs.(46), then in the

we choose

3
ct=5(4-3c1—Cy)A, (473

4
cf=§c$+c§. (47b)

In addition, there are two roots with propagating speed
=0, which shall be referred to as nonpropagating or diffu-
sive modes. The above relation of Eg¢7b) between propa-

This can be accomplished by applying a rotational transfor-

rotated space, dispersion equatidd) becomes

O O O o o o

~ic2k

s+,

o O O o o o

0 0 O 0 0
0 0 0 0 0
0 0 0 0 0
P2
icck 0 O 0 0
" =0. 49)
s+s, O 0 0 0
0 s ickk 0 0
0 ik s+s, O 0
0 0 0 st+s O
0 0 0 0 s+5
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In the above determinant, there are five irreducible diagonakqgs. (51) are satisfied. This angular dependence of the lon-
blocks. The first X 3 block, couplingp, j,, andP,,, has gitudinal attenuation is obtained by setting the angular de-
one pair of longitudinal modes propagating with wave speegendence of the coefficient &f° to zero. It can actually be
+c,_ and one diffusivdnonpropagatinglongitudinal mode; eliminated by introducing a relationship between the param-
the next two X2 blocks, couplingj, and P, (or j, and  etersa; and a, (see further discussions in Sec. VC and
P,,), represent two pairs of transverse modes propagatindetails in Appendix A

with wave speedtct; and the last two X1 blocks repre- Finally, the relaxation of the two nonpropagating stress
sent two diffusive stress modes, corresponding to the stressodes can be considered. These modes relax exponentially
componentsd,,,, andP,. with a rate— Dk? (diffusive behavioy. The diffusivity D is

Analysis of the 22 blocks in Eq.(48) shows that the anisotropic (angle dependentunless some relationships
transverse modes are propagativeave modes for wave amongc,, C,, andr are satisfiedsee Appendix A When
numbers larger than the critical wave numkegr defined by  these relationships are taken into account, we have

1 5 ( 1 1 (49) 8 1 1)

—=2cr = -5/, Do=——5|——=|. 52

ke “Tls 2 ® (12+a?)\sz7 2 52
and that the attenuation of waves is related to a relaxing o
shear viscosity as in Eq1). The dependence of the critical D. Isotropic criteria of the model
wave number on the relaxation parametgy which affects The requirement for isotropy will depend upon the defi-
transverse wavesee Eq(413] is one of the key features of nition of isotropy. If we limit the isotropy to that of the
the model for viscoelastic fluids. damping of the propagating modes, then a simpler model

At low-frequency limitk<s, , the resultgof c; andc,  than the present one would achieve the gwally 26 mo-
given by Eqs.(47)] obtained here reduce to that of the pre- ments are needed in that case; no particle with speed 2 are
ceding sectiorithe solution forcg of Eq. (39)]. At high fre-  needed If we demand the diffusive stress modes to be iso-
quency, the contributions from higher-order momefiis-  tropic as well, then we need the present 32 moment model in
yond the stress tengobecome significant. which a specific relationship between, c,, andr must be

In order to analyze the attenuation of the waves, i.e., teatisfied. If in addition we want longitudinal and transverse
obtain solution as=ivk— yk?, k? terms must be included modes to be decoupled up to second ordd; ithen we have
in the dispersion determinant in the expansiorkof.e., the to choose a particular value of eithe or c,. The results

dispersion equation must includ€? as the following: given in Appendix A are obtained based on the most strin-
gent conditions considered here, i.e., the wave speeds and
def M(KW+K@)M~t—C+sl]=0. (50)  attenuation rates of propagating modes and attenuation of

_ . _ diffusive modes are all isotropic.
The analysis of the above equation becomes rather tedious

algebraically, even though it is @9 determinant. We shall IV. NONLINEAR ANALYSIS AND GALILEAN
therefore only outline the analysis, and provide the final re- INVARIANCE
sults in the following.

We first consider the infinite frequency limit, i.es,=0.
The attenuation of the transverse modes is obtained from the One of the difficulties encountered in the lattice gas au-
coefficient ofk!! of the expansion of Eq50) in powers ofk.  tomata was the lack of Galilean invariance, leading to non-
The attenuation is highly anisotropic, strongly dependent otinear advection terms different from that in the Navier-
the orientation ok, i.e. on6 and ¢, for arbitrary values of Stokes equation§10-12. With a set of bounded discrete
the parameters in the model. However, this anisotropy can beelocities, neither the lattice gas automata nor the lattice
eliminated by the following choice of relaxation parametersBoltzmann equation can satisfy Galilean invariance rigor-

A. Nonlinear equilibria and Galilean invariance

in addition to Eq.(40): ously. That is, both the lattice gas automata and the lattice
5 3 Boltzmann equation are inherently non-Galilean invariant
Se= WeSy7, (518  [25]. Nevertheless, the defect due to the non-Galilean invari-
ance can be systematically improv@uder by order irk) by
'S;= w1S,7, (51  increasing the number of discrete velocities. Inclusion of a
large enough set of discrete velocities in the lattice Boltz-
1 mann equation allows one to solve that difficulty in practice.
S24= 4827, (510 The approach we shall use here considers the effect of a

mean uniform flow with a mean velocity superimposed to
and wg and w, are complicated functions af c,, andc, small amplitude fluctuations. Gal_llean invariance of the sys-
(see details in Appendix A tem means that the speed of various waves with wave vector

The attenuation of the longitudinal modes still depends ork shall bev(0)+V- k, wherev(0) is the wave speed af
the orientation ok even when the preceding conditions of =0, andk=k/k.

021203-9
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With the assumption tha¥>|¢,|, we shall repeat the
analysis performed in the linear dispersion equation. How-
ever, in order to correctly consider the effect due to the mean
flow velocity V, the equilibria of various moments must in-
clude nonlinear terms. We consider the following general
nonlinear equilibria, of which the linear part remains intact
[i.e., the same as Eq&0) and(21)]:

ho

(eq)__
II SZB (r

(eq)_ ] xpyz+ ] ypxz+ ] zPxy

PHYSICAL REVIEW E 67, 021203 (2003

(54m)
p

l)pii " i E{X,W}, (54”)

where the second-rank tensgrsandd are given by

(eq) E <Qy|Qy>

Y (edea) 7% Pyy= (3Puw— P2, (559
(e,le,Xe.le.) 0= — (Pt Pov) (55b)
+ 27 M > = ay,u,Q yQ,u ’ (53) “ > vy
(@alea)eales) _
. . ) pi=py, i, le{xy.z}, (550
wherec,,, is the second-order coupling coefficient. Obvi-
ously, the most general considerationa@df® would include d=diag pxx,Pyy:Pz2)- (550

a large number of coupling constants so that analytic treat-

ment of the problem becomes too laborious. To reduce th&he linearized collision operator can be determined up to the

number of coupling constants we only include the terms thafirst order inV as the following:

satisfy symmetry considerations and dimensional analysis.
We propose to use the following second-order equilibria,

e )_1 j°i
eled ga p+3— (549

(eq)

ay(V)=Sy————5,8,y. (56)

aO”Q aay

The speeds of longitudinal and transverse waves at both low
and high frequencies are determined through the dispersion

q(eq):§cl j+Alj'_p+A2j‘_d1 (54b) faquation of the ab_ove Iirjearized c_oIIision opera_tor. Our aim
2 p p is to solve the dispersion equation and obtain the wave
. ] d speeds behaving ag0)+ gV cosd, wherev (0) is the wave
. I-p J: speed wherV/=0 (up to the first order irV), and ¥ is the
(eq)—=_ r 1= p p )
=5C2 0+ A p A p’ (549 angle betweeV and wave vectok. Galilean invariance im-
plies thatg=1. Isotropy and Galilean invariancey€1)
2i—iv—1 lead to
(e p Ix Fl)y Jz, (540)
1| (A+9B) c? .
2 :2 R
(eq)_ Jy_Jz 1 3 B CZ 1 ( a)
WW_A5 p ’ (549 s
jij| . . :} Mc_?r_ —A (57b)
pIF=Ae= =, 1%l i, lelxyzh (54D | N a
2i5-iy-1 1 (A+21B) 2
(eq)_ X y 4 ( ) Cr
=, = 7 = 54 _T|g_ T
XX 7 p ( g) 3 3 B C§ , (570)
i5—iz
aeh=pg L2, (54h) 1]  2(A+21B) ¢2
P Y 2| e (570
S
N L L T P -7 )
p A 1 cf 578
5= Zon o
. . . 72B (2
(eq)_ Jx(pyy_ Pz2) JyPxy™ 1 2Pxz . Cs
Nx "=~ 3 -2 ’ (54J)
p p 5
A e T (579
ﬂ)(,eq): _ Jy( Pzz— pxx) _ 2] zpyz_prxy, (54|() 6 12A C§ '
3p p
— S 3 [ck
ngeq): B Jz( Pxx pyy) _2] xPxz Jypyz, (54|) A7:§:(_;— 1) , (579)
3p p Cs
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1 (ct
As—% c_g_ , (57h
A ! C$ 1 7i
g—A—a C—g— . (5 I)
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B. Dispersion equation linear inV

With the linearized collision operator determined up to the
first order inV according to Eq.(56) with the nonlinear
equilibria given by Eqgs(54), the dispersion equation also
depends orV, and so are the roots of the dispersion equa-
tion, which determine the speeds and attenuation rates of
various waves.

The dispersion equation with linear equilibria is indepen-

With the equilibria determined, we can show that the modedent ofV, and is given by Eq(44) up to first order irk. In

is indeed Galilean invariant in tHe=0 limit, at both low and
high frequencies:

99=1, g’=1, (58a
gr=1, gr=1. (580
0 0 0 0
0 iky; O 0
8s, .
0 —2 |kX2 0
9cg
0 0 0 ikys
s
v| O 0 0 =
CS
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
where
4c? €03
Xl_ 3C§1
4c?
CS
5
X3=1——, (600
S
5

the rotated coordinate system such that wave vektis
along with one of the axes, E(#4) becomes Eq(48). The
nonlinear contribution o(V) to the dispersion equation is
first order ink andV as well. Under the same coordinate
system of Eq(48), and ifV is parallel to the wave vectd
(along one of the axésthe contribution from the quadratic
parts of the nonlinear equilibria to the dispersion equation,
which is linear inV andk, amounts to the following:

: (59

CS
0 0 0 ik O
0 0 0 0 ik

Therefore, the determinant 89) should be added in the left
hand side of the dispersion equatiof8) to consider the
effect due to a finite mean flow velocity.

Our analysis on Galilean invariance can be verified by
either direct numerical solution of the dispersion equation
depending orV [i.e., including the determinant q69)] or
direct numerical simulation of relaxation of waves in the
LBE model. The numerical results from these two methods
confirm that the LBE model is indeed Galilean invariant at
both low and high frequencies. We also find that the attenu-
ation of waves depends up®&f) and this dependence cannot
be suppressed even for a small valu&.afThe analysis oV
dependence of the attenuation of waves requires the disper-
sion equation to include terms up to second ordek.in
Considering models with more discrete velocities might help
solve this problem.
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V. MACROSCOPIC EQUATIONS Qu=Qi, i, le{xy.z. (65)

The way to proceed follows closely what has been done irtollecting all terms of order 0 and 1, we get the following
the preceding section. First, to avoid typographic complicaset of equations:
tions, we do not include in the following derivations second-
order derivatives in space that come from the fact that the dp+V-j=0, (663
lattice Boltzmann equation is a finite difference equation on
a lattice. As indicated previously, a “ien correction” at

the end can be a remedy to the problem. 9+ V-P=0, (66b)
From Eg.(30) we have the following 32 linear equations R
for the fluctuation %Q+D*=-5sQ, (660
1 wherej=pu, and
0t§0a+'82 Ma,BM,B'yeB'Vgoy:Sa(Paa (61)
Y
P=cZpl+c3Q, (679

where|p)=M|¢) is the fluctuation of the moments. We ar-

range the moments in the following order. First, the four ) R ) 2

conserved quantitieglensity and its flux then the five qua- D*=(Vj)+(Vj)!, D*=D*- §IV -J. (67b
siconserved quantitigg;; , and then all other moments. The

remaining 23 modes can be called “fast” modes, similar tOThe superscript T represents the transpose operation on a
the treatment of the Langevin equation in statistical mechan- P P P SP P
econd-order tensor. The above equations could be used to

ics. Assuming that the 23 relaxation rates are large, we cal etermine the long-wavelength modds—0) of the EMF.

perform a successive elimination of the Sorresponding €449 is would lead to the same conclusions as in the preceding
tions keeping only terms of order 1 ands]/ This way t0  gaction.

proceed leads to nine equations of motion that include up to
second-order derivatives in space. We assume that we start
from an initial condition where the “fast” modes have small
amplitudes and contribute only to ordeE;l and thus will We shall consider successively various second-order
be neglected. terms(second-order spatial derivatiye¥he expressions that
This process leads to cumbersome expressions. Sonyée shall write should be included on the left hand side of the
simplifications can be achieved using some of the results gprevious equations of order 0 and 1. When only some of
the preceding sectiofrelationships betweea, b, andc, and  these equations are concerned, we shall indicate between pa-

expressions foB,g/Ss andS,,/S,7). We shall now present rentheses which equation to modify at second order.
the results for various orders in spatial derivatives. These
results will be considered as the equation of motion of an
equivalent macroscopic fluiEMF) to be distinguished from Terms in 1%, contribute only to the mass flux equations
the full LBE model. of |,

B. Second-order spatial derivatives

1. Bulk viscosity at low-frequency limit

A. Zeroth- and first-order spatial derivatives i LVVj, (68)

To simplify the analysis, we first change scale for the five

quasiconserved quantities that we cal where the bulk viscosity at low-frequency limity, is given

by Eq.(43). The above term appears in the right hand side of

16 the equation foy in Egs.(66).

Q=g 75 Pxxor (623

9(4+7c +Cy) 2. The modes associated Wifm,, , My, Myy, My,, My}

16 These five quantities have the symmetry of a symmetric

wa:mpww, (62b  traceless second-rank tensor and contribute only to the flux

12 equations
1=—=——"pn, 1#l, i, le{xy,z}, (620 .~ 1 )
Q=773c,—¢,™ =bey.z, (629 i o v21+§vv-1), (69

and define the elements of a symmetric traceless teDdnyr
where the nonrelaxing shear viscosity at low-frequency limit
1 is given by
nyZE(SQWW_ Qxx)s (63

1 1
- —) . (70)

~ 1
v0=§(4—3c1—c2—8c$)(s—30 5

Q2= — (Quxt ny)a (64)
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3. The other modes of higher order in velocity b;=2b,, r;=Dbg, r,=by. (75)

These modes usually play no role in an ordinary fluid.
They have an anisotropic contribution for the EMF unlessFinally, longitudinal and transverse modes can be fully de-
care is taken in the choice of the parameters of the modetoupled if
First, there are terms that involve the second-order derivative
of the density, their expressions are bs=b,. (76)

2b e - .
Qi - (20%p= 32 p—3%p), (71l  When the above condition is satisfied, the corresponding
3 equations involve a term diagonal @; proportional tor
(which is interpreted as a diffusion coefficigna traceless
.2by 2 i foB;; ional h [
L 22 (Rp—p) (71p ~ Symmetric tensor 0Qj; proportional tor, that we interpret
o 3 y z as a shear viscous contribution. In addition, there is a cou-
) S pling betweerQ;; and derivatives of the density proportional
Qij: bidjp, i#j, ije{xy,z}, (710 tob,, which is interpreted as a bulk viscous contribution. By

_ . substitutingb,, bz, by, bg, andbg in terms ofr, andr, into
we shall consider them later. Second, there are terms |nvoIvKs_(72) we have

ing Qj;
Qux: (rq+ I’Z)VZQXX-i- 3!’2&5XQXX— 3I’2((3’)2,y— 3§z)wa Qux: (r1+r2)V2Qxx+ 3r2‘9§xQXX_3r2(‘9)2/y_ 8§z)wa
2 2 2
+2bs( (9)2(ny),— ZﬁizQyZ-i- o'?ngZX), (72a +2r,( anyxy_ 2’S’yzQyz'{' 95:Q2x), (773
Quw!  (N+3r2) V2 Quu—r2(8y = 35) Qo= 3r205Quw  Quawt  (F1+312)V2Quu— 25y~ 32) Qut 20 2 32, Qyy
+ 2b5(‘9§nyy_ &ngzx) , (72b - 5>2<waw_ &ngzx)v (77b)
. 24 _ 2~ _ 2
QXV - (3b4+ bG)V Qxy 3b3(7yzQZZ 3b4( azzQxy QXY : (rl+ 3r2)V2Qxy_ 3r2(9§zsz_ 3r2( ﬁngxy
— 2,Qy,— 92,Q4, 72¢
szyz yzsz) (729 _(9§nyz_ ﬁngzx)a (779
Qyzi (3bg+bg) V2Qy,~ 3b3d5,Qu— 3ba(05,Qy. Ot (114 31V 3o O B 2.0
: (ry+3r —3r,0 —3r,(d
— 32,Qax %2Quy), (729 TR o TR e
5 ) - &nyzx_ &szxy)a (770
Qux: (3byt bG)VZsz_ 3b3(9yZny— 3b( 8nyZX
. 2 2 2
_‘93212Qxy_ ainyz)- (729 Qi (ri+3rp)V sz_ng&yzny_er(anyzx
2 2
A number of coefficientst;, b,, bs, by, bs, bg, ry, and Iy Qxy~ 95Qy2)- (779

r,) introduced in Eqs(71) and(72) are functions ofr, ¢4,
c,, and ofsg, S;, ands,; [S,4 has been substituted by Eq. When the “full” isotropy is satisfied, the attenuation co-
(510)]. Similar to the preceding section, the adjustment ofefficients of high-frequency modes are given by:
parameters in the above equations can be used to enforce the
isotropy of the model. L 1 1.

The minimal isotropy condition is obtained when the at- ¥1=5(3ba+bg) + S0, (783
tenuation coefficients of small excitations do not depend
upon the orientation ok. This can be achieved when the

following relations are satisfied: . 2ci(bpt+4bs+bg) 1. 2
g 'yLZ 3 2+4 2 +§V0+ §€0, (78b)
by=2(by+ by —2b,+ by), (733 (3¢5 +4cr)
ry=—3bs+6b,—3bs+bg, (73b _ [3c2(4b,+bg)—2b,c2]
70 = 3 2 4 2 y (78C)
r2:b3_b4+b5. (730) ( Cs+ CT)
Isotropy can be imposed for the nonpropagating modes. This Dy=bsg, (780
leads to
bs=2b,— Db, (74)  Where y; corresponds to the diffusive longitudinal mode,
and the contributions te5 andy; from the moments other
and simplifies the previous conditioi83) to than the stress tensor have been included.
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The question now is whether it is possible to satisfy all C. Dispersion equation up to second order irk
the relationships between the parameters indicated above. It
turns out that the present model has a sufficient number of The preceding results regarding the attenuation coeffi-
free parameters to achieve the full isotropy. The detailed exeients of high-frequency modes can also be obtained by the
pressions of the parameters are provided in Appendix Aanalysis of the dispersion equation up to second ordét in
There is still some freedom in the choice of the remainingln the coordinate system where the wave veétas along
parameters, this freedom will be used to obtain positive atene of the axes, the following>9 determinant should be
tenuation coefficients, positive values®f, andw,, and to  included in the left hand side of Eq48) for the “high-

improve stability of the model for large values laf frequency” attenuation of various modes:
0 0 0 0 0 0 0 0
0 O 0 0 0 0 0 0
8
5b2 0 (ry+4r, O 0 0 0 0 O
) 0 0 0 0 0 0 0 0 Q@
Kl o 0 0 0 (43r) 0 0 o ol (79)
0 O 0 0 0 0 0 0 0
0 0 0 0 0 0 (ry+3r,) 0 O
0 0 0 0 0 0 0 ri O
0 O 0 0 0 0 0 0 ry

and the “low-frequency” contribution to the damping of longitudinal and transverse modes ii4Bgis related to the
following 99 determinant:

0 0 0 q
0 ¢ 0 q
0 0 0 q
4.
0 0 0 §0+§V0) 0 0 0 0 0Q
~k2|0 0 O 0 0 0 0 0 0, (80)
0 0O 0 0 §o+§7/o) 0 00
0 0 0 0 0 0 0 0 (
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 (

wherev, and{, are the nonrelaxing shear and bulk viscosi-€duations. This leads to the following hydrodynamic equa-
ties, given by Eqs(70) and(43), respectively. Obviously the tions for the equivalent macroscopic fluid derived from the
model is isotropic up to second order knbecause the dis- LBE model:

persion equation, including Eqé79) and (80), is indepen-

dent of the orientation of.

dp+V-j=0, (81a
D. Hydrodynamic equations for equivalent macroscopic fluid
To summarize the preceding discussion, we can combine _ _ - _
Egs.(66), (68), (69), (71), and(77) to obtain hydrodynamic A j+V-(u))=—V-P+1pV%5+7VV-j, (81D
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C2
HQ+V-(UQ)+ —
C

S

vector, the additional terms relatedlfp®, andW¥ couple the
(Vu)-Q+Q-(Vu) different linear hydrodynamic modes in two ways: the lead-
ing mode for the mean flow motion acts as a source for the
others with an amplitude linear in the average transverse ve-
_ —er+r1V2Q+3rZS—pI3 locity Vr; this coupling changes the damping of the leading
mode with a term quadratic M.
The term related td" could probably be removed by set-
1_&) @_( _@) P ting cs=ct with no side effects other than an increased com-
6B A ] " pressibility. However, the conditioA=6B, under which the
(810 two anisotropic terms related ® and ¥ would disappear,
cannot be enforced: this requires= —3 [cf. Eq. (A4) in
whereu=j/p, P=c2pl+c2Q, D is the traceless part of the APPendix A}, a value for which the coupling coefficieat,
. . in Eq. (200 is ill-defined[cf. Eq. (A3c) in Appendix A.
rate of strain tensob, Equation (81¢ has been written in a form as close as
2 _ possible to the usual “convected mod¢l'7]. Since the Jau-
D=D- §(V-u)|, D=(Vu)+(Vu)' (82 mann derivative is the only material derivative that can be
obtained for a symmetric traceless tensor, we had expected to
obtain it. It turns out that instead, the left-hand side of Eq.
(810 looks very similar to the traceless version of the so-
2 called upper-convected Maxwell derivative @ but with
S=(VV-Q)+(VV-Q)'~ 3TM(VV-Q)I,  (83a  opposite sign for the terf(Vu)"- Q+ Q- (Vu)].
We have therefore achieved our goal of finding an EMF
1 that has all the properties of linear viscoelastic fluids. If we
VV=VV-_-V.VI, (83b) consider the equation for one of the componentQofwe
3 find that apart from the term proportional to a second-order
_ + t differential operator, it is identical to the equation for a Jef-
I'=(Q-Q+(Q-Q'=(W-Q-(W-Q", (89 freys fluid. The influence of the second-order differential op-
erator could be minimized by working under such conditions

2
3 TQ-(Vw]l

2
I+

+b,VVp+|1——%
CS

[with (Vu);;=d;u;] and other tensors are defined as follows:

O=(Vu)—(Vu, (83d that's,>bgk?. This is easily achieved in a real fluid, as it is
W=(u¥)~(u¥) (839 Coopis fme scales can be extremely Small. However, i the
O=(Q-W) 3, 830 principle, i lmed by practcal congerations mciuding
5i=Qi—Qy. I, je{xy.z, 839 g;rerzmr};{ir:)tr)fr of nodes of the lattice and the duration of the
V=[x, (83h

o VI. NUMERICAL SOLUTION OF THE DISPERSION
the Symbol Tr indicates the trace of a tensor, and the symb(%QUAHON AND SIMULATION OF WAVE PROPAGATION
* in Eq. (83f) defines the component-by-component multi- |\ THE THREE-DIMENSIONAL LBE VISCOELASTIC

plication operation between the two tensadiise., if A MODEL
=B*C, thenA;;=B;;C;;). The parameterb,, b,, r;, and ) ) ) )
r, are given in Appendix A, and The results discussed in Sec. Ill on the dispersion equa-

tion can be verified in two wayg1) direct computation of
the roots of the full dispersion equation given by E85)

70=4ot 3% @4 without any approximation, of2) direct numerical simula-
tion of the LBE model and determination of how initial spa-
is the bulk viscosity of the model. tially periodic excitations relax in time. Both types of tests

Although we did not show any detailed expressions forwere conducted to verify our theoretical analysis.
the hydrodynamic equations previously derived using the For the direct numerical solution of the dispersion equa-
dispersion equation and the Chapman-Enskog expansion, tibn of Eq.(35), it is noted that the lattice Boltzmann equa-
has been verified that both approaches give exactly the santion is a finite difference equation on a regular lattice, so its
relationships between the model parameters. This includesolutions are of the forra'e' (%@ k2T - As shown in the
the nonlinear convective terms involving productsuodnd  beginning of this section, the dispersion equation is equiva-
Vj or VQ leading to Galilean invariance. However, the termslent to an eigenvalue problem for which efficient and accu-
involving products of or Q andVu have only been obtained rate numerical techniques are readily available, regardless of
from the Chapman-Enskog analysis. the value ofk. The roots of the dispersion equati¢n,|«

The nonlinear terms ensure Galilean invariance of the=1, ...,32 can be computed as functions laf and vy, (k)
model when the average velocity is parallel to the wave vec=Inz,(k) is the relaxation rate for the corresponding mode
tor. However, when the velocity is perpendicular to the wave o,). Fork<1, the numerical values of,, corresponding to
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hydrodynamic modes(i.e., v,|—o=0) are in excellent Wherew=Kkcs in the low-frequency region and=kcr in
agreement with the analytical results up to second order in the high-frequency region along the direction lof For a
(provided that the “Haon correction” is adequately consid- nonzero uniform velocity/, the transverse components be-
ered. It should be stressed that the direct eigenvalue analysigave as

of the dispersion equatiofto numerically computez,,) is )

very useful for large values df, the situation in which the ur(t)=ur(0)cogk- Vt)exp( — yrk°t), (87)

usual Chapman-Enskog analysis would not work. The eigen- h the lonaitudinal ts beh .
value analysis also leads to further “tuning” of the adjustableW ereas the fongitudinal components benave in a more com-

parameters of the model in order to improve the numericaic’!ica‘ted fashion as the beat note of two signals oscillating at
stability of the model, i.e., to avoid situations where the reald'fferent frequencies:

part of one or more, becomes positive, which would obvi- _ ) - N
ously cause the model to be unstable. U () =u (0){cod (k-V+)t]=cog (k-V=w)t]}
The direct simulation of the LBE model, which is the X exp(— y k%t). (88

ultimate aim of the present work, turns out to be quite simple
to perform, and the LBE algorithm is rather fast on a modernThe simulation of wave propagations allows us to extract
workstation. It is easy to initiate either longitudinal or trans-information of the phasgw and k-V=*w)] and the relax-
verse waves of a given wave vectoin an LBE system with  ation of amplitudes {+ and y,). The results of phases and
periodic boundary conditions. Fourier analysis of time serieattenuation rates of the wave obtained by the direct numeri-
of density or transverse velocity fluctuations allows one tocal simulations agree very well with the results obtained by
determine both phase velocities and relaxation coefficientgdirectly computing the roots of the dispersion equation for
These quantities are found to be in excellent agreement witthe same value of the wave vecttie relative error is about
the previous theory for systems large enough so that dispe6.01%).
sion effects due to the lattice discreteness can be neglected We simulated wave propagations in the three-dimensional
(i.e., k<1). The relative accuracy for the phase velocitiesviscoelastic media in both low and high frequency regions,
(both longitudinal and transverses better than 0.01% and and with and without a uniform velocity of the flud. The
that for the attenuation coefficients is better than 0.1%.  system size i, X N, X N,=269<3X 2. The wavevector is
Whenk is no longer small, the results of the simulation chosen be parallel ta axis, i.e.,k=(k,,0,0), andk,=4
are in good agreement with the direct numerical computation< 27/N, . It should be noted that this particular choicekof
of z,. Even for unstable situatiorige., Ref,)>0 for some in the simulation does not affect the generality of the analy-
«a], the wave vector of the observed “diverging” mode ob- sis. The same analysis was also applied to wave vectors par-
tained from the direct LBE simulation is in good agreementallel to (1,1,0) and (1,1,1). The value of the adjustable pa-
with the one leading to largest value of the real paz gk). rameters used in the simulations a&e 3, a,=—20, az=
As this usually occurs for large values kifthis means that —0.13, r=-0.47, s,=1.95, s3=1.30, s,=1.60, S;5
the lattice Boltzmann algorithm is valid up to large values of=1.30, s,4=1.40, s,,=1.50, ands,,=1.90. With the pa-
k where its accuracy might be questionable. rameter values giver;s=/22/6~0.7817 andc;~0.5723.
The illustrate our point, we simulated wave propagationFigures 1 and 2 show dynamic behaviors of various waves in
in the LBE model under various conditions. A system of sizelow-frequency and high-frequency regions, corresponding to
N, XNy XN, with periodic boundaries is used to test thes =1.95 ands, =0, respectively, and with or without a con-
wave propagations in the three-dimensional lattice Boltzstant mean flow velocity. It is important to note that, in the
mann model for viscoelastic fluids. The initial condition of present model, the relaxation times for different waves can
the velocity field is a uniform velocity=(V,,V,,V,) plus  be adjusted individually, which is impossible for the LBGK-

a fluctuationéu: type models[22,23. In particular, whens, =0, the corre-
sponding relaxation time is infinite, this certainly cannot be
u(x,t=0)=V+ du-cogk-x), (85)  achieved by the LBGK-type mode[22,23.

where the wave vectde= (k, ,ky ,k,) is chosen such that the VIl DISCUSSION AND CONCLUSION

periodic boundary conditions are satisfied, .k In this work we have presented a three-dimensional lattice
=2n7/N;, for integern andie{xy,z}. As the system Boltzmann model for viscoelastic fluids. By carefully ana-
evolves, the spatial Fourier transform of veloaitfk,t) can  lyzing the dispersion equation of the model, we can make the
be computed, and the transversg)(and longitudinal ) model isotropic and Galilean invariant. In addition, the re-

modes(with respect tck) can be determined. maining adjustable coupling coefficients in the model pro-
For the case of a zero uniform velocity=(0,0,0), the vide the freedom to optimize the numerical stability of the
transverse and longitudinal modes behave as follows: model. The proposed model is capable of simulating linear

viscoelastic fluids in three dimensions and could be readily
(863 extended(by using a more complicated dynamics for the
“internal” modes) to reproduce subtle phenomena such as
the Senftleben-Beenakker effect in gagefs Ref.[26], Sec.
u (t)=u,(0)coq wt)exp — y k?t), (86b) 3.4), or to simulate nematic liquid crystals, and even bipolar

ur(t) = ur(0)exp( — yrk?t),
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AN
increases. This would limit the application of the present
i ] model to simulate flows with moderate Reynolds number. To
resolve all these issues, it is inevitable to have a more com-
0 100 200 300 400 0 200 400 600890 plex model, and this is left for future study. However, it is
worth to mention that one effective alternative to incorporate
FIG. 1. Relaxation of longitudinal and transverse waves in thethermal effects in the model is to solve the energy equation
low-frequency regime. The values of adjustable coupling constantfydependently by using finite difference or other techniques
in the simulations area=3, a,=-20, a;=-0.13, andr  [27] This approach completely decouples the energy equa-
=—0.47, and the values of relaxation parameterssarel.95,5;  tion from the mass and momentum equations and thus re-
=1.30, 54=1.60, 515=1.30, 519=1.40, $5,=1.50, $9=1.90, and 1565 the spurious coupling between the energy and shear

s,=0. The solid, dashed, and dot-dashed lines represent amplitud?ﬁodes which instigates the numerical instability in the
of one longitudinal and two transverse waves at a particular loca- '

: ) ; energy-conserving LBE mode[&7].
tion, respectively, normalized by=0.05; () V=(0,0,0) and(b) . .
V=(0.05,0,0), in lattice unitsd,=&,—1). There are several directions to extend the present model

in the future. Consideration of one additional scalar quantity
would introduce a frequency-dependent bulk viscosity in the

model, as is done to characterize dispersion of sound. Adding

We have ?ISO extended the ana_lly5|s of dispersion equaﬂogl nonvanishing trace to the second-order tensor with compo-
of S|mple_fIU|ds[18] to gomplex fI_wds. I sh(_)ul_d be s.tressed nents{p;;} could be useful to mimic “elongational” effects.
that the linear dispersion equation analysis is equivalent t(i)ncluding]m more traceless tensors may be useful to reproduce
the.Chapman—Enskog apaly5|s in the sense that b.Oth of them)nexponential decay, as is observed in most situations in
derive the hydrodynamic equations from the lattice Boltz-

. . . . . reality, with more or less complicated behavior if couplings
mann equation. H_owever, th? analy3|s_ of dispersion equat'oﬂetween the internal modes are adequately considered. It be-
can also pTOV'de linear stability analysis for Iar_ge wave num'_comes apparent to us that in order to have a lattice Boltz-
ber k, which the Chapman-Enskog analysis cannot do

hereas the Chapman-Enskoa analvsis can obtain some rlomann model to correctly simulate three-dimensional vis-
w P 9 ysl : 1% elastic fluids, the model must possess certain necessary

Of), . - ;
. . X . . atures to satisfy the proper couplings among different
equation analysis. Therefore, the dispersion equation anal)é\'/aves in low- and high-frequency regions, and isotropy and
sis, in general, can serve as a powerful tool to study th alilean invariance. Our experience indicates that some ex-

E:]téii Bglr':;?”lz_r;n models complementary to the Chapm"’mile,ting LBE models for viscoelastic fluids in two dimensions
Th gm dyl 1S nstructed in the present work simulat 22,23 are unlikely to satisfy the necessary conditions and
€ model constructe € prese ork simulate ay not be easily extended to three dimensions because

2}25:;?1%'??:'%5}}?&'#'dfélfngnepri% egrlilatlr?ga:rsl nic;]tcf)?;'_'these models do not possess sufficient degrees of freedom to
9 : » only y accommodate these necessary conditions.

pressible fluids are considered hdtberefore there are no We also realize that. althou ; ; ;

) i > , o , gh the dispersion equation
S?gglke;'r;otrhtehgrur:?alslztctﬁ;dég;; ri?r?r;“%orsg?alr;t? 3'Lf'ectjoltaanalysis can be systematically applied to the LBE models in
1Ei)nite number of discrete velocitig®5] and th;epline;rity of general, the analytical treatment of the dispersion equation
the relaxation model of the LBE model considered Hera can become intractable algebraically when the number of
Third, in order to have a correct thermal conductivit . theadjustable parameters becomes large for complex models.

’ Y: Therefore, it is highly desirable to minimize the number of

reIa>.<at|on ratess ands; must be relatedi.e., the '”f'“e’.“’e parameters in an LBE model, and the research is under way
of higher-order moments on the heat transfara way in- by the authors

compatible to Eqgs(51a and (51b). This means that the

model needs additional degrees of freedom to accommodate
this relationship betweelsg and s;. Finally, through the
analysis of the dispersion equation, we found that the linear
stability of the model degrades as the mean flow velocity

—_

w,(£)/V, u{t)/V
w(t)/V, ult)/V

|
—-

|
N

fluids under the influence of external magnetic field.
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FIG. 2. Relaxation of Iongitudinal and transverse waves in the APPENDIX A: PARAMETERS IN THE MODEL
high-frequency regime. The values of adjustable parameters in the
simulations are the same as in the simulations shown in (Ejg. Among the adjustable parameters in the model, there are
excepts,=1.95; (@ V=(0,0,0) and(b) V=(0.05,0,0), in lattice three coupling coefficients in stress tensfpg} and{m;}:
units (6,=6,=1).
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a, b, andc, and there are six coupling coefficients in the
equilibria: a,, az, a4, ¢, Cy, andr. The isotropy of the

high-frequency wave speed-) leads to

where

c=\/§b,

_ (4-3c;—cy)
9(4+7cy+cy)

1 1
A=—— B=——.
(12+a?) (72+b?)

(Ala)

(Alb)

(A2)

PHYSICAL REVIEW E 67, 021203 (2003

(r=1)
C(r+3)°

(A3Kk)

w7=
With the above formulas foc; andc,, the parameteb?

becomes

 8a®+3(3r+1)
- (1-1n)

2 (A4)

Therefore, there are only four coupling coefficients that re-
main to be determined, a,, az, andr. The ranges of these
parameters will be determined by the positivitiesbdf cg,

c%, and of the transport coefficients. In addition, the stability
of the model must be tested by numerical computations of

The isotropy of the attenuation coefficients further leads tdhe eigenvalues of the dispersion equation for a wide range

the following relations between the coupling coefficients:

2(27r3— 4712+ 197 +55)
3(21r —29)(15r2+8r—15)

Cl:

Ri
Cr=—2%5,
2 R2
R,=(297%3—357%2—89r +85),
R,=(9r —17)(15r%+8r —15),

(Rsaz— 18R,C2)
8(r—1)(21r—29)(3r+1)’

a4: 12+

R3=(99r3+201r2— 1075 +583),

R,=(2433— 5432+ 269 +95),

(r+3)(Rpaz+6RC2) (1 1
o 12(r—1)Rg Sy, 2]

Rs=(243%—3182—361r +340),

b2:b1/2,
b3:b4:b5:r2,
be=r1,

8 1 1)
r=—— =5/
V(12422 s 2
TR

2 TR5 So7 2)’

Re=(3r+5)(12r2—17r+17),

2(3r-2)
@673 (3r+1)’

(A3a)

(A3b)

(A3c)

(A3d)

(A3e)
(A3f)

(A3g)

(A3h)

(A3i)

(A3))

of values ofk: this will help choose the relaxation parameters
available §,, Sz, S4, Si5, Sig, Sp7, andsSyg).

APPENDIX B: TRANSPORT COEFFICIENTS OF THE
MODEL

There are twelve relaxation parameters in the moslel:
S3, S4, S, S7+ St Si5, S19, So4, Sp7, Sog, @ndSgg. Isotropy
criteria require that four o§,'s depend on others:

6= wgS27, (Bla
S7= w7Sy7, (B1b)
~ 1
S24= 7527, (Blo)
~ b?..
So= @Ssoa (B1d)
where
111 o
s S, 2

The speed of sound waveg, transverse wave, and
longitudinal wavegc, , are

1
c§:7—2(64+a2), (B3a)

T2 (12+a?)  (12+a?) (2Ur—-29R;’
(B3b)
ci=sc2+c?, (B30

3

where the expressions fa andc, have been substituted in
c%, andR, andRg are given in Eqs(A3). The nonrelaxing
shear and bulk viscosities of the model are
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o= salcd = - B4 T Wl B6

Vo—l—za Ct 3—30—5, (B4a) yT_E(rl ra) EVO’ (B6a)
_ 1 gr3ee,—ay| 1) B4b [2ry+4r)+byJcd 1. 2
lo=7p(B+361-) {5 —5)- (B4 o= S et 5o, (BGD)

(3c2+4c3)
Attenuation coefficients for transverse, longitudinal, and dif-

fusive waves in the low frequency limit are: i} 3(r1+4r2)0§—2b1c$

= B6¢C)
0—¢c2 (i_l +a_2 i__ (B53) 70 (3C§+4C12') (
RIS T 2) T12lsy, 2/ )
The diffusion coefficient is
0 1g +2 9 (B5b)
YL=5 S YT
L 2 0 3 T 8 1 1
. . . Do=————|<— 5] (B7)
and in the high-frequency limit are (12+a%) \S27 2
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