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Theory of the lattice Boltzmann method: Three-dimensional model for linear viscoelastic fluids
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A three-dimensional lattice Boltzmann model with thirty two discrete velocity distribution functions for
viscoelastic fluid is presented in this work. The model is based upon the generalized lattice Boltzmann equation
constructed in moment space. The nonlinear equilibria of the model have a number of coupling constants that
are free parameters. The dispersion equation of the model is analyzed under various conditions to obtain the
constraints on the free parameters such that the model satisfies isotropy and Galilean invariance. The macro-
scopic equations are also derived from the lattice Boltzmann model through the dispersion equation analysis
and the Chapman-Enskog analysis. We demonstrate that the dispersion equation analysis can be used as a
general and effective means to derive hydrodynamic equations, excluding some nonlinear source terms, from
the lattice Boltzmann model, to obtain conditions for its isotropy and Galilean invariance, and to optimize its
stability. We show that the hydrodynamic behavior of the lattice Boltzmann model has memory effects, and
that in the linear regime, it behaves as a viscoelastic fluid described by the Jeffreys model. Some numerical
results to verify the theoretical analysis of the model are also presented.
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I. INTRODUCTION

More than a decade ago, the lattice Boltzmann equa
~LBE! @1–9# was introduced as a generalization of the latt
gas automata@10–12# intended as a new and possibly ef
cient alternative method to simulate fluid flows on para
computers. The general principle of the lattice Boltzma
equation is to consider particles moving synchronously al
the links of a highly symmetric lattice, and the dynamics
the system is fully discrete. The evolution of the LBE syste
at each discrete time step includes two parts: displacem
and some modeled collisions that lead to a redistribution
particle populations according to some rules. The state of
system is defined by the values of the particle population
each lattice node. In a way, this amounts to replacing
usual single-particle distributionf (r,j,t) considered in the
continuous Boltzmann equation of statistical mechanics
the set $ f a(r j ,tn)ua50,1,2, . . . ,(N21)%, where N is the
number of discrete velocities. The quantityf a(r j ,tn)
[ f (r j ,ja ,tn) is the single-particle distribution function o
discrete velocityja , on a lattice spacer j , and at discrete
time tn . The lattice spacer j5 j 1l11 j 2l21 j 3l3 is represented
by integer coordinates (j 1 , j 2 , j 3), and the basis vectorsl1 ,
l2, and l3; and discrete timetn5nd t , wherenP$0,1, . . .%
andd t is the time step size.

To define an LBE model, several key elements need to
specified:~1! the lattice space and a set of discrete velociti
and ~2! the collision rules for the redistribution of fictitiou
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‘‘particles.’’ The collision rules are designed to mimic th
interparticle interactions in a real fluid. Once the system
specified, standard techniques in kinetic theory and statis
mechanics, such as Chapman-Enskog analysis, can be
plied to derive macroscopic equations for the quantities t
are slow in temporal scale and gradual in spatial scale, r
tive to the elemental time stepd t and the lattice constant o
the lattice spacedx , respectively, that is, in the hydrody
namic regime. With desirable physical properties incorp
rated, the LBE models can be designed to simulate vari
simple as well as complex fluids.

The goal of the present work is to construct a thre
dimensional LBE model for viscoelastic fluids. The preci
microscopic mechanisms that lead to non-Newtonian beh
ior in real fluids are still not fully understood, but there ex
many phenomenological models that mimic these fluids. T
general idea in those phenomenological models is that m
ecules of the fluid either organize at small scale~structural
relaxation! or have internal degrees of freedom, which can
affected by the local state of the fluid~due to stress, for
instance!. Here we shall consider the paradigm of molecu
reorientation in which distortions of angular distributio
functions can relax to uniform distribution.

The essential physics of viscoelasticity in non-Newton
fluids is the interplay between hydrodynamics and the lo
relaxation dynamics due to internal degrees of freedom
fluid particles. Although the exact microscopic mechanis
of this interplay may be unknown, it would not prevent
from constructing a model that possesses adequatelarge
scale properties of non-Newtonian fluids. We only requi
that the relaxation time scales due to internal degrees of f
dom of fluid particles are comparable to hydrodynamic tim
scales, and that there exist coupling constants between m
roscopic and internal degrees of freedom that can be adju
to set the values of hydrodynamic quantities~propagation
speed of various excitations and transport coefficien!

ch
;
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LALLEMAND et al. PHYSICAL REVIEW E 67, 021203 ~2003!
needed in the definition of nondimensional parameters~e.g.,
Reynolds number Re and Deborah number De, etc.! consid-
ered in numerical simulations by using the model accord
to the similarity principle of hydrodynamics.

The LBE model presented here is an extension of
generalized lattice Boltzmann equation by d’Humie`res @13#
and a two-dimensional LBE model for viscoelastic flui
@14,15#. To construct a three-dimensional LBE model f
athermal viscoelastic fluids, we incorporate a symme
traceless stress tensor to mimic the effect due to inte
degrees of freedom of fluid particles. The stress-tensor-
quasiconserved quantities in the model have the same s
metry as the viscous stress tensor and couple other ‘‘f
kinetic modes to hydrodynamics~viscous stress tensor! @16#.
We demonstrate that the LBE model presented here
simulate viscoelastic fluids described by Jeffreys model@17#.
Although the proposed model is similar to an earlier tw
dimensional LBE model for viscoelastic fluids@14,15#, the
method to analyze the LBE model is entirely different. Wh
most previous work relies on the Chapman-Enskog anal
to obtain the hydrodynamic equations from the LBE mod
@14,15#, we analyze the dispersion equation of the mode
derive the hydrodynamic equations@18#. The analysis of the
dispersion equation of the LBE system enables us to o
mize the isotropy of transport coefficients. It also allows
to improve the linear stability of the model, which is beyo
the capability of the standard Chapman-Enskog analysis@18#
as the unstable modes have very short wavelengths.

The paper is organized as follows. Section II describes
three-dimensional LBE model for viscoelastic fluids and p
sents the model with linear equilibria in moment space@18#.
Section III considers the dispersion equation of the lineari
collision operator, and obtains the hydrodynamic modes
both low- and high-frequency limits. Transport coefficien
~wave speeds and attenuation coefficients of waves! are ob-
tained as the roots of the linearized dispersion equation. V
ous conditions between coupling coefficients and relaxa
parameters in the model are derived by enforcing isotrop
the transport coefficients. The theoretical results of the tra
port coefficients are verified numerically. Section IV exten
the model to include nonlinear terms in the equilibria a
derives the conditions under which the model is Galile
invariant. Section V explicitly derives the macroscopic~hy-
drodynamic! equations of the LBE model. The model ca
simulate Jeffreys as well as Maxwell model of viscoelas
fluids. Finally, Sec. VII indicates possible extensions of t
model and summarizes the present work. We also incl
two appendixes to provide a summary of all the adjusta
coefficients in the model~Appendix A! needed to perform a
computer simulation and the transport coefficients of
model ~Appendix B!.

II. THREE-DIMENSIONAL VISCOELASTIC LBE MODEL

We consider the specific case of a real viscoelastic fl
made of nonspherical particles or molecules. The state
these particles can be distorted in various ways. First, t
angular distribution can be distorted when subjected to
applied stress.~If the optical properties of particles are a
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isotropic, then such fluids can exhibit the phenomenon
flow birefringence.! The corresponding anisotropic angul
distortion can relax towards an equilibrium of isotropic d
tribution with a relaxation timet, and this relaxation gives
rise to a~complex! frequency-dependent shear viscosity fo
periodic flow with frequencyv:

n5n`1
~n02n`!

~11 ivt!
, ~1!

wheren0 andn` are the viscosities at the limits ofv→0 and
v→`, respectively. From here on, zero- or low-frequen
limit means the evolution time scales are slow relative to
relaxation time of the system, whereas` or high-frequency
limit means the evolution time scales are fast relative to
relaxation time of the system. Second, in addition to
angular distortion, the particles can also be stretched or c
pressed like a little spring. This ‘‘elongational’’ type of dis
tortion will not be considered here as it would require taki
into account internal degrees of freedom with symmetry d
ferent from what is discussed here. The effects on fluid pr
erties due to the presence of the angular distortion are
subject of the present work.

A. Brief description of the model

As in other lattice Boltzmann models, we are going
greatly simplify the description of molecular motions of re
fluids. We shall reduce the phase space available to parti
The lattice space used here is a simple three-dimensi
cubic lattice space. In the following analysis, we shall u
normalizations such that the lattice constantdx and the time
step sized t are set to be unity, so that quantities involvin
spatial and temporal scales become dimensionless.

The discrete velocity set$ea% is chosen as the following

ea55
~0,0,0!, a50

~61,61,0!, ~0,61,61!, ~61,0,61!, a51 –12

~61,61,61!, a513–20

~62,0,0!, ~0,62,0!, ~0,0,62!, a521–26.
~2!

The discrete velocityea is in the unit ofc5dx /d t51. The
set of the above 27 discrete velocities is the minimal one
obtain the required viscoelastic fluid properties. It should
noted that the velocities of speed 2 are chosen instead of
of speed 1 in the standard 27-velocity LBE model becaus
some symmetry constraints, which are discussed in the
lowing analysis.

In order to model the angular distortion of particles,
symmetric traceless second-order stress tensor is introd
in the LBE model. This tensor in three-dimensional spa
can be represented by a set of five numbers:

~ f 27, f 28, f 29, f 30, f 31![~mxx* ,mww ,mxy ,myz ,mzx!,
~3a!

ea5~0,0,0!, a527–31, ~3b!
3-2
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which are considered as five additional distribution functio
of zero particle velocity, and thus do not propagate. T
stress tensor specified by$mxx* , . . . ,mzx% models the aniso-
tropic effects due to the internal degrees of freedom of p
ticles, which are responsible for viscoelastic behaviors o
non-Newtonian fluid. Note that the traceless constra
breaks the symmetry of the diagonal elements of the ten
this is the reason why we have introduced the elem
mww5(myy2mzz), such that myy5(mww2mxx)/2 and
mzz52(mww1mxx)/2, wheremxx5mxx* /3 and the factor 3
originates from the projections chosen in Eqs.~17h! and
~17o!. In what follows, we shall use the subscriptww to
denote the difference between the last two diagonal
ments.

The state of the model is therefore specified at each n
of the lattice,r j , and at timet5n, by a set of 32 distribution
functions:

u f ~r j ,n!&[„f 0~r j ,n!, f 1~r j ,n!, . . . ,f 31~r j ,n!…T, ~4!

whereT is the transpose operator. From here on the Di
notations of bra,u•&, and ket,^•u, vectors are used to de
noted column and row vectors, respectively.

The evolution equation of the LBE model can be writt
in general as the following:

u f ~r j1ea ,n11!&5u f ~r j ,n!&1uV„f ~r j ,n!…&, ~5!

whereV is the collision operator to be discussed later, a

u f ~r1ea ,n11!&

[„f 0~r1e0 ,n11!, f 1~r1e1 ,n11!, . . . ,f 31~r1e31,n11!…T.
~6!

Note thatea50 for a50, and 27–31. Equation~5! describes
both the advection due to the motions of the particles and
redistribution of the populations due to collisions.
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B. Mapping between the velocity and moment space

From N distribution functions,$ f aua50,1, . . . ,(N21)%,
an equal number of moments,$%aua51,2, . . . ,N%, can be
constructed without gaining or losing any information. How
ever, the moments do have clear physical significance in
context of hydrodynamics, because they can be chose
physical observables such as density, momentum, ene
stress, fluxes, etc. For this reason, moment spaceM,RN is
chosen instead of the discrete velocity spaceV,RN to con-
struct the LBE model, following the idea of the generaliz
lattice Boltzmann equation due to d’Humie`res@13#. The LBE
model constructed in moment spaceM includes a number of
adjustable parameters, the values of these parameters ar
ied to optimize the physical properties of the model@18#. As
it has been shown@18#, moment representation of the lattic
Boltzmann equation is better suited to model various co
sion mechanisms, whereas discrete-velocity representatio
natural for the advection process—a key feature of the lat
Boltzmann equation reminiscent of spectral techniques u
in CFD.

We first define the basis of moment spaceM, and the
linear transformation matrixM that uniquely maps a vecto
u f & in discrete velocity spaceV,R32 to a vectoru%& in mo-
ment spaceM,R32, i.e.,

u%&5Mu f &, u f &5M21u%&. ~7!

For the sake of simplicity, we shall divideV into four sub-
spaces according to particle speed, and first consider
mapping between each subspace ofV and the corresponding
subspace ofM.

Particles with zero velocity have only one single mome
of the mass densityr (0). Therefore, the mapping between th
subspaceV0,R and the subspaceM0,R is an identity ma-
trix of rank 1, i.e.,M(0)5I51.

For the next group of 12 particles with speedA2 in the
velocity subspaceV15R12, we consider the matrix
M(1)5

¨

1 1 1 1 1 1 1 1 1 1 1 1

1 21 1 21 0 0 0 0 1 1 21 21

1 1 21 21 1 21 1 21 0 0 0 0

0 0 0 0 1 1 21 21 1 21 1 21

1 1 1 1 22 22 22 22 1 1 1 1

1 1 1 1 0 0 0 0 21 21 21 21

1 21 21 1 0 0 0 0 0 0 0 0

0 0 0 0 1 21 21 1 0 0 0 0

0 0 0 0 0 0 0 0 1 21 21 1

21 1 21 1 0 0 0 0 1 1 21 21

1 1 21 21 21 1 21 1 0 0 0 0

0 0 0 0 1 1 21 21 21 1 21 1

©
. ~8!

A vector in the subspaceV1,
3-3
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uF (1)&[~ f 1 , . . . ,f 12!
T, ~9!

is mapped to a vector in the corresponding subspaceM1 of M,

uC (1)&5M(1)uF (1)&5~r (1), j x
(1) , j y

(1) , j z
(1) ,pxx

(1) ,pww
(1) ,pxy

(1) ,pyz
(1) ,pzx

(1) ,qx
(1) ,qy

(1) ,qz
(1)!T, ~10!
of

ol-
wherer (1) is the mass density;j x
(1) , j y

(1) , j z
(1) are three com-

ponents of the momentum~mass flux!; pxx
(1)/3, (3pww

(1)

2pxx
(1))/6, 2(3pww

(1)1pxx
(1))/6, pxy

(1) , pyz
(1) , and pzx

(1) are the
components of a symmetric traceless stress tensor; andqx

(1) ,
qy

(1) , qz
(1) are three third-order moments~with the dimension

of a flux of energy!.
Similarly, for the eight distribution functions inV2 for the

particles with speedA3, the following matrix:

M(2)51
1 1 1 1 1 1 1 1

1 21 1 21 1 21 1 21

1 1 21 21 1 1 21 21

1 1 1 1 21 21 21 21

1 21 21 1 1 21 21 1

1 1 21 21 21 21 1 1

1 21 1 21 21 1 21 1

1 21 21 1 21 1 1 21

2
~11!

transforms

uF (2)&[~ f 13, f 14, . . . ,f 20!
T ~12!

into

uC (2)&5M(2)uF (2)&

5~r (2), j x
(2) , j y

(2) , j z
(2) ,pxy

(2) ,pyz
(2) ,pzx

(2) ,q(2)!T,

~13!

whereq(2) is a third-order moment@}(aea,xea,yea,zf a#.
Finally for six distribution functions inV3 for the particles

with speed 2, we have the transformation matrix

M(3)5S 1 1 1 1 1 1

2 22 0 0 0 0

0 0 2 22 0 0

0 0 0 0 2 22

8 8 24 24 24 24

0 0 4 4 24 24

D , ~14!

which transforms

uF (3)&[~ f 21, f 22, . . . ,f 26!
T ~15!

to
02120
uC (3)&5M(3)uF (3)&5~r (3), j x
(3) , j y

(3) , j z
(3) ,pxx

(3) ,pww
(3) !T.

~16!

There still remain five additional distributions,f 27, . . . , f 31,
to be considered later. So far, only some diagonal blocks
the transform matrixM are explicitly given asM(0), M(1),
M(2), andM(3). The remaining elements ofM shall be given
when all the moments$%a% are explicitly constructed in
terms of$ f a%.

According to the symmetry classes of the model, the f
lowing 32orthogonalmoments can be constructed from$ f a%

r5%15r (0)1r (1)1r (2)1r (3), ~17a!

e5%2528r (0)22r (1)1r (2)14r (3), ~17b!

«15%35r (1)23r (2)12r (3), ~17c!

«25%456r (0)2r (1)1r (3), ~17d!

j x,y,z5%5,8,115 j x,y,z
(1) 1 j x,y,z

(2) 1 j x,y,z
(3) , ~17e!

qx,y,z5%6,9,1252 j x,y,z
(1) 1 j x,y,z

(3) , ~17f!

hx,y,z5%7,10,135 j x,y,z
(1) 22 j x,y,z

(2) 1 j x,y,z
(3) , ~17g!

pxx5%145pxx
(1)1pxx

(3)1cmxx* , ~17h!

exx,ww5%15,17522pxx,ww
(1) 1

1

4
pxx,ww

(3) , ~17i!

pww5%165pww
(1)1pww

(3)1bmww , ~17j!

pxy,yz,zx5%18,20,225pxy,yz,zx
(1) 1pxy,yz,zx

(2) 1amxy,yz,zx ,
~17k!

exy,yz,zx5%19,21,23522pxy,yz,zx
(1) 1pxy,yz,zx

(2) , ~17l!

hx,y,z5%24,25,265qx,y,z
(1) , ~17m!

h05%275q(2), ~17n!

pxx5%2852c@pxx
(1)1pxx

(3)#1216mxx* , ~17o!

pww5%2952b@pww
(1)1pww

(3)#172mww , ~17p!

pxy,yz,zx5%30,31,3252a@pxy,yz,zx
(1) 1pxy,yz,zx

(2) #112mxy,yz,zx
~17q!

wherer is the total mass density~zeroth-order moment!; e is
the energy density~second-order moment!; «1 and «2 are
3-4
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THEORY OF THE LATTICE BOLTZMANN METHOD: . . . PHYSICAL REVIEW E 67, 021203 ~2003!
energy square densities~fourth-order moment!; j
[( j x , j y , j z) is the mass flux or momentum density~first-
order moment!; q[(qx ,qy ,qz), andh[(hx ,hy ,hz) are en-
ergy fluxes~third-order moment!; h[(hx ,hy ,hz) andH0 are
fluxes of energy square~fifth-order moment!; pxx , . . . , pzx
andpxx , . . . ,pzx are second-order moments that are rela
to the components of two second-rank symmetric trace
stress tensors; andexx , . . . ,ezx are fourth-order moment
that are related to the components of a symmetric and tr
less second-rank tensor~products of energy and stress te
sors!. Three parameters,a, b, andc, are introduced to play an
important role in the new physics mimicked by the LB
model coupling the hydrodynamic stress to the stress du
the internal degrees of freedom of particles. Equations~17!
fully prescribe all 32 moments$%a% in terms of 32 distribu-
tion functions$ f a%, and thus fully specify the transformatio
matrix M and its inverseM21. One may note that bothM and
M21 involve a small number of coefficients so that the tra
formation from distributions to moments andvice versacan
be efficiently accomplished in the spirit of FFT used in sp
tral techniques in CFD.

It should be noted that the moments given in Eqs.~17! are
orthogonal, but they are not normalized. That is, for ea
column vectoru%b& and row vector̂ %au ~which is a trans-
pose of u%a&, and vice versa!, we have the following or-
thogonal relationship:

^%au%b&5^%au%a&dab , ~18!

wheredab is the Kronecker delta.
There are two hydrodynamic stress tensors, the com

nents of which are either$pi j % or $p i j %, which are coupled to
the stress tensor of$mi j % due to the internal degree of free
dom. The stress tensor of$pi j % simulates quasiconserve
modes, whereas that of$p i j % mimics fast kinetic modes. The
basic physics of viscoelasticity is cast in these stress tens

C. Equilibrium and dynamics of the model

The choice of the collision operatorV is rather arbitrary,
provided basic principles of physics are satisfied~conserva-
tion of mass and momentum, etc.!. However, this arbitrari-
ness ofV can be reduced by considering the linearized
tice Boltzmann equation@2#.

To uniquely define the operatorV, we proceed to charac
terize the collision processes as linear relaxations such
the moments relax towards an equilibrium state accordin
simple relaxation equations withconstantrelaxation rates,
and the equilibrium state depends upon the values of som
the moments. It would be natural to assume that the equ
rium state depends solely upon the conserved quantities—
mass density and the components of the momentum~mass
flux! here. The equation of energy conservation is not c
sidered here. This would lead to the following~linear! equi-
librium distribution functions in general:

%a
(eq)5

1

^%au%a& ( 8g ^%gu%g&cag%g , ~19!
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wherecag is the coupling coefficient between%a and %g ,
and the summation(8 includes only the conserved mode
and possibly quasiconserved modes. Specifically, we ha

e(eq)5
1

8
a2r, ~20a!

«1
(eq)5

1

4
a3r, ~20b!

«2
(eq)5

1

2
a4r, ~20c!

q(eq)5
3

2
c1j, ~20d!

h(eq)5
1

2
c2j, ~20e!

wherea2 , a3 , a4 , c1, andc2 are coupling coefficients. To
allow more flexibility in the model for later analysis, w
introduce an additional coupling coefficientr:

exx
(eq)5

9A2

32B
~r 221!pxx , ~21a!

eww
(eq)5

9A2

32B
~r 221!pww , ~21b!

where

A5
1

~121a2!
, B5

1

~721b2!
. ~22!

In Eqs.~21! definingexx andeww , the isotropy is assumed
which implies the relation between coupling coefficientsa,
b, andc obtained later@see Eqs.~46! in Sec. III C#. All the
equilibria of the moments other than those given in Eqs.~20!
and~21! should then be set to zero at linear level. Obvious
the equilibria prescribed by Eqs.~20! and ~21! are not the
most general ones, given the degree of freedom of the mo
However, the linear equilibria capture the dominant beh
iors of the model, and the nonlinear terms will be conside
later in Sec. IV.

The relaxation equations of the moments are

%a* 5%a2sa@%a2%a
(eq)#, ~23!

wheresa is the relaxation rate for the moment~or mode! %a .
Decomposing the moments into equilibrium and fluctuati

u%&5u% (eq)&1ud%&, ~24!

the effect of the collision step can be expressed as

u%* &5u%&1Cud%&, ~25!

whereC is the linearized collision operator. The matrixC is
mostly diagonal, with the following diagonal elements:
3-5
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~0,2s2 ,2s3 ,2s4 ,0,2s6 ,2s7 ,0,2s6 ,2s7 ,0,2s6 ,2s7 ,

2sr ,2s15,2sr ,2s15,2sr ,2s19,2sr ,2s19,2sr ,2s19,

2s24,2s24,2s24,2s27,2s28,2s28,2s30,2s30,2s30!,

where the symmetries of the lattice space~or obvious isot-
ropy! have been taken into account. Among the diago
elements ofC, the four zeros correspond to four conserv
quantities (r, j x , j y , and j z). Note that the relaxation ratesr
for five components of the stress tensor,$pi j %, is not neces-
sary large~meaning close to 2 in the LBE analysis!. The
off-diagonal elements ofC are given by

^%auCu%g&5
^%gu%g&

^%au%a&
cagsg . ~26!

The nonzero off-diagonal elements ofC in moment spaceM
are

^ruCue&5
1

8
a2s2 , ~27a!

^ruCu«1&5
1

4
a3s3 , ~27b!

^ruCu«2&5
1

2
a4s4 , ~27c!

^ j i uCuqi&5
3

2
c1s6 , ~27d!

^ j i uCuhi&5
1

2
c2s7 , ~27e!

^exxuCupxx&5
9A2

32B
~r 221!s15, ~27f!

^ewwuCupww&5
9A2

32B
~r 221!s15. ~27g!

In velocity spaceV, Eq. ~25! becomes

u f * &5u f &1M21CMud f &. ~28!

III. DISPERSION EQUATION AND HYDRODYNAMIC
MODES

There are two approaches to deriving the hydrodyna
behavior of the model:~1! the Chapman-Enskog analysi
modified for the situation of some moderate relaxation ra
to derive macroscopic equations directly from the mo
@14,15#; and ~2! analysis of dispersion equations of th
model@18#. Although the Chapman-Enskog procedure is
conventional means most often used in the LBE analysis,
02120
l

ic
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e
e

shall use the analysis of dispersion equation in the pre
work to study the hydrodynamic behavior of the LBE mod

A. Dispersion equation and its eigenvalue problem

We study the behavior of the system subject to an ini
condition that is the superposition of a uniform equilibriu
state and a small spatially periodic fluctuation with wa
vectork, such thatk!1:

f a~r j ,t !5 f a
(0)1fa~r j ,t !, ~29!

where f a
(0) is a spatially uniform and steady equilibrium an

fa(r j ,t) is the fluctuation. The wavelength of the fluctuatio
is large compared to the lattice spacingdx (51). We solve
the linearized dispersion equation to obtain the solutions
the form exp(ik•r1st) corresponding to the hydrodynam
modes of the system.

Fourier transform inr j of the linearized evolution equa
tion of fa gives @19,20#

Auf~k,t11!&5uf~k,t !&1M21CMuf~k,t !&, ~30!

where advection operatorA is a diagonal matrix:

Aab5exp~ iea•k!dab . ~31!

Therefore,

uf~k,t11!&5Huf~k,t !&, ~32!

where the evolution operator

H[A21@ I1M21CM#. ~33!

The eigenvalue problem ofH provides the generalized hy
drodynamics of the system, i.e., for an eigenvaluela of H,

ga5 ln la ~34!

allows us to determine wave number dependent phase ve
ity and transport coefficient of the system.

Laplace transform of Eq.~30! in time leads to the follow-
ing dispersion equation:

det@Aes2I2M21CM#50. ~35!

Usually the dispersion equation cannot be solved ana
cally. For smallk ands, we expandA andes in Taylor series
in k ands, respectively:

Aab5I1K(1)1K(2)1•••, ~36a!

Kab
(n)5

1

n!
~ iea•k!ndab , ~36b!

and consider the dispersion equation linear ink ands,
3-6
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det@MK(1)M212C1sI#50. ~37!

Note that the linearized dispersion equation in effect has o
included first-order spatial and temporal derivatives beca
it is only first order in bothk and s. As was first demon-
strated by He´non in his analysis of the lattice gas automa
@21#, second-order derivatives due to the presence of the
tice should be included in the analysis. It is understood t
the effect of the corresponding second-order derivati
amounts to a correction of the terms 1/sa by (1/sa21/2).
Therefore, for the sake of simplicity, we can omit secon
order derivatives in the analysis for now and make the c
rection later simply by replacing 1/sa by (1/sa21/2). We
shall use the following substitution whenever it is approp
ate:

1

s̃a

[
1

sa
2

1

2
. ~38!

The linearized dispersion equation~37! is a polynomial of
degree 32 ins and k5(kx ,ky ,kz). Because it is difficult to
compute the roots of the dispersion equation analytica
even by perturbation technique in the limit ofk→0, further
approximation must be made in order to solve Eq.~37!. We
note that in contrast with four conserved quantities, all ot
nonconserved quantities relax towards their equilibria w
constant relaxation rates$sa%. Therefore, we can conside
1/s̃a.0 as small parameters, and solve the linearized dis
sion equation correct to the order of 1/s̃a under two circum-
stances. First, assuming thatk! s̃a including s̃r , Gaussian
elimination can be used to reduce the size of the determi
from 32332 to 434 for four hydrodynamic modes~two
transverse and two longitudinal modes!. This leads to ‘‘low-
frequency’’ modes. In effect, all the kinetic modes~modes
other than the conserved ones! are treated as ‘‘fast modes
and have to be eliminated.

The second approximation considered is thatk! s̃a ex-
cept s̃r . In this case, the size of the determinant reduces
939 involving five components of the stress tensor$pi j % in
addition to four conserved quantities. The four conserv
quantities as well as five quasiconserved quantities,$pi j %,
are separated from the remaining 23 ‘‘fast’’ modes. In t
case, the nine modes are the ‘‘high-frequency modes.’’ T
values of propagating speeds and attenuation rates of va
waves are obtained by solving the dispersion equation. N
that from now on, ‘‘low’’ and ‘‘high’’ frequencies are defined
with respect tosr , and that we are in the low-frequenc
regime with respect to the 23 fast modes of the system.

B. Low-frequency modes

The reduced form of the dispersion equation to a 434
determinant allows us to find two longitudinal modes w
phase velocity

cs5
1

12
A2~621a2!, ~39!
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and two transverse modes that relax exponentially with a
gT

0k2. The isotropy ofgT
0 implies that the five relaxation

rates for the moments$pi j % are equal (sr), and furthermore
that

s̃285
b2

6a2
s̃30. ~40!

Under such conditions, we have

gT
05cT

2F S 1

sr
2

1

2D1
a2

12S 1

s30
2

1

2D G , ~41a!

cT
25

3

2

~423c12c2!

~121a2!
. ~41b!

Longitudinal waves have an amplitude that relaxes expon
tially with an equivalent damping constant related to

gL
05

1

2 S z01
4

3
gT

0D , ~42!

z05S 11
1

2
c12cs

2D S 1

s2
2

1

2D5
1

72
~8136c12a2!S 1

s2
2

1

2D ,

~43!

wherez0 is the bulk viscosity. Note at this stage that a sim
plified analysis involving but one relaxation rate in the LB
model, i.e., the lattice Bhatnagar-Gross-Krook~LBGK!
model@3,4,22,23,28#, could not lead to an isotropic behavio
unless the particular choice ofb5aA6 ~i.e., s285s30) is
made.~It should be noted that two-dimensional LBE mode
in Refs. @22,23# for viscoelastic fluids may not be extende
to three-dimensional space when isotropy and Galilean
variance are considered for minimally damped transve
waves.!

C. High-frequency modes

We now consider larger values ofk so that k! s̃r no
longer holds, butk! s̃a and s̃a@ s̃r . As indicated above, the
application of Gaussian elimination reduces the 32332 de-
terminant in Eq.~35! to a 939 determinant involving five
components of the stress tensor$pi j %, in addition to four
conserved quantities~oner and three components ofj).

The reduced dispersion equation up to the order ofk, with
939 determinant, is
3-7
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U 0 i2k1kx 2 ik1ky 2 ik1kz s1 s̃r 0 0 0 0

0 0 ik1ky 2 ik1kz 0 s1 s̃r 0 0 0

0 ik2ky ik2kx 0 0 0 s1 s̃r 0 0

0 0 ik2kz ik2ky 0 0 0 s1 s̃r 0

0 ik2kz 0 ik2kx 0 0 0 0 s1 s̃r

U50, ~44!
n
ic

r
ic

fu-

pre-

for-
where

k15
3

8
~417c11c2!, ~45a!

k25
1

8
~423c12c2!, ~45b!

andA andB are given by Eq.~22!. With s̃r substituted in Eq.
~44! for sr , somek2 terms have been included implicitly i
the analysis. The wave vector can be written in spher
coordinates,

k5~kx ,ky ,kz!5k~cosf sinu,sinf sinu,cosu!.

We are seeking solutions such thats5 ivk. The propagating
behavior of the model will be isotropic if the wave speedv is
independent of the orientation ofk, i.e., u andf.

If we assumes̃rÞ0, then the leading term ink in the
dispersion equation~44! is of the orderk4. Setting the lead-
ing term to zero leads to the following solutions:v50 for
two diffusive modes~nonpropagating modes!, and v56cs
for two low-frequency acoustic modes.

If we assumes̃r50, the leading term is now of the orde
k9. The solution for the wave speed can be made isotrop
we choose
02120
al

if

c5A3b, ~46a!

B5
~423c12c2!

9~417c11c2!
A. ~46b!

With the above choices ofc and B, the dispersion equation
~44! has two pairs of roots with opposite speedsv56cT ,
and one pair of roots with opposite speedsv56cL , where

cT
25

3

2
~423c12c2!A, ~47a!

cL
25

4

3
cT

21cs
2 . ~47b!

In addition, there are two roots with propagating speedv
50, which shall be referred to as nonpropagating or dif
sive modes. The above relation of Eq.~47b! between propa-
gating speeds of transverse and longitudinal waves is
cisely what is expected in a viscoelastic fluid@24#.

Note that the determinant in the dispersion equation~44!
can be simplified ifk is along one of the axes~e.g.,x axis!.
This can be accomplished by applying a rotational trans
mation to the determinant. If wave vectork is rotated to align
with x axis, and if c and B satisfy Eqs.~46!, then in the
rotated space, dispersion equation~44! becomes
*
s ik 0 0 0 0 0 0 0

ics
2k s

3

2
icT

2k 0 0 0 0 0 0

0
8

9
ik s1 s̃r 0 0 0 0 0 0

0 0 0 s icT
2k 0 0 0 0

0 0 0 ik s1 s̃r 0 0 0 0

0 0 0 0 0 s icT
2k 0 0

0 0 0 0 0 ik s1 s̃r 0 0

0 0 0 0 0 0 0 s1 s̃r 0

0 0 0 0 0 0 0 0 s1 s̃r

*50. ~48!
3-8
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In the above determinant, there are five irreducible diago
blocks. The first 333 block, couplingr, j x , and Pxx , has
one pair of longitudinal modes propagating with wave spe
6cL and one diffusive~nonpropagating! longitudinal mode;
the next two 232 blocks, couplingj y and Pxy ~or j z and
Pxz), represent two pairs of transverse modes propaga
with wave speed6cT ; and the last two 131 blocks repre-
sent two diffusive stress modes, corresponding to the st
componentsPww andPyz .

Analysis of the 232 blocks in Eq.~48! shows that the
transverse modes are propagative~wave! modes for wave
numbers larger than the critical wave numberkc , defined by

1

kc
52cTS 1

sr
2

1

2D , ~49!

and that the attenuation of waves is related to a relax
shear viscosity as in Eq.~1!. The dependence of the critica
wave number on the relaxation parametersr , which affects
transverse waves@see Eq.~41a!# is one of the key features o
the model for viscoelastic fluids.

At low-frequency limit k! s̃r , the results@of cT and cL
given by Eqs.~47!# obtained here reduce to that of the pr
ceding section@the solution forcs of Eq. ~39!#. At high fre-
quency, the contributions from higher-order moments~be-
yond the stress tensor! become significant.

In order to analyze the attenuation of the waves, i.e.
obtain solution ass5 ivk2gk2, k2 terms must be included
in the dispersion determinant in the expansion ofk, i.e., the
dispersion equation must includeK(2) as the following:

det@M~K(1)1K(2)!M212C1sI#50. ~50!

The analysis of the above equation becomes rather ted
algebraically, even though it is a 939 determinant. We shal
therefore only outline the analysis, and provide the final
sults in the following.

We first consider the infinite frequency limit, i.e.,s̃r50.
The attenuation of the transverse modes is obtained from
coefficient ofk11 of the expansion of Eq.~50! in powers ofk.
The attenuation is highly anisotropic, strongly dependent
the orientation ofk, i.e. onu andf, for arbitrary values of
the parameters in the model. However, this anisotropy ca
eliminated by the following choice of relaxation paramete
in addition to Eq.~40!:

s̃65v6s̃27, ~51a!

s̃75v7s̃27, ~51b!

s̃245
1

4
s̃27, ~51c!

and v6 and v7 are complicated functions ofr, c1, and c2
~see details in Appendix A!.

The attenuation of the longitudinal modes still depends
the orientation ofk even when the preceding conditions
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Eqs. ~51! are satisfied. This angular dependence of the l
gitudinal attenuation is obtained by setting the angular
pendence of the coefficient ofk10 to zero. It can actually be
eliminated by introducing a relationship between the para
eters a3 and a4 ~see further discussions in Sec. V C an
details in Appendix A!.

Finally, the relaxation of the two nonpropagating stre
modes can be considered. These modes relax exponen
with a rate2D0k2 ~diffusive behavior!. The diffusivityD0 is
anisotropic ~angle dependent! unless some relationship
amongc1 , c2, and r are satisfied~see Appendix A!. When
these relationships are taken into account, we have

D05
8

~121a2!
S 1

s27
2

1

2D . ~52!

D. Isotropic criteria of the model

The requirement for isotropy will depend upon the de
nition of isotropy. If we limit the isotropy to that of the
damping of the propagating modes, then a simpler mo
than the present one would achieve the goal~only 26 mo-
ments are needed in that case; no particle with speed 2
needed!. If we demand the diffusive stress modes to be is
tropic as well, then we need the present 32 moment mode
which a specific relationship betweenc1 , c2, andr must be
satisfied. If in addition we want longitudinal and transver
modes to be decoupled up to second order ink, then we have
to choose a particular value of eitherc1 or c2. The results
given in Appendix A are obtained based on the most st
gent conditions considered here, i.e., the wave speeds
attenuation rates of propagating modes and attenuatio
diffusive modes are all isotropic.

IV. NONLINEAR ANALYSIS AND GALILEAN
INVARIANCE

A. Nonlinear equilibria and Galilean invariance

One of the difficulties encountered in the lattice gas a
tomata was the lack of Galilean invariance, leading to n
linear advection terms different from that in the Navie
Stokes equations@10–12#. With a set of bounded discret
velocities, neither the lattice gas automata nor the lat
Boltzmann equation can satisfy Galilean invariance rig
ously. That is, both the lattice gas automata and the lat
Boltzmann equation are inherently non-Galilean invaria
@25#. Nevertheless, the defect due to the non-Galilean inv
ance can be systematically improved~order by order ink) by
increasing the number of discrete velocities. Inclusion o
large enough set of discrete velocities in the lattice Bo
mann equation allows one to solve that difficulty in practic

The approach we shall use here considers the effect
mean uniform flow with a mean velocityV superimposed to
small amplitude fluctuations. Galilean invariance of the s
tem means that the speed of various waves with wave ve
k shall bev(0)1V• k̂, wherev(0) is the wave speed atV
50, and k̂[k/k.
3-9
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With the assumption thatV@ufau, we shall repeat the
analysis performed in the linear dispersion equation. Ho
ever, in order to correctly consider the effect due to the m
flow velocity V, the equilibria of various moments must in
clude nonlinear terms. We consider the following gene
nonlinear equilibria, of which the linear part remains inta
@i.e., the same as Eqs.~20! and ~21!#:

%a
(eq)5( 8g

^%gu%g&

^%au%a&
cag%g

1( 8g,m

^%gu%g&^%mu%m&

^%au%a&^%au%a&
cagm%g%m , ~53!

wherecagm is the second-order coupling coefficient. Obv
ously, the most general consideration of%a

(eq) would include
a large number of coupling constants so that analytic tr
ment of the problem becomes too laborious. To reduce
number of coupling constants we only include the terms t
satisfy symmetry considerations and dimensional analy
We propose to use the following second-order equilibria,

e(eq)5
1

8
a2r13

j• j

r
, ~54a!

q(eq)5
3

2
c1 j1A1

j•p

r
1A2

j•d

r
, ~54b!

h(eq)5
1

2
c2 j1A3

j•p

r
1A4

j•d

r
, ~54c!

pxx
(eq)5A5

2 j x
22 j y

22 j z
2

r
, ~54d!

pww
(eq)5A5

j y
22 j z

2

r
, ~54e!

pil
(eq)5A6

j i j l

r
, iÞ l , i , l P$x,y,z%, ~54f!

pxx
(eq)5A7

2 j x
22 j y

22 j z
2

r
, ~54g!

pww
(eq)5A8

j y
22 j z

2

r
, ~54h!

p i l
(eq)5A9

j i j l

r
, iÞ l , i , l P$x,y,z%, ~54i!

hx
(eq)52

j x~pyy2pzz!

3r
22

j ypxy2 j zpxz

r
, ~54j!

hy
(eq)52

j y~pzz2pxx!

3r
22

j zpyz2 j xpxy

r
, ~54k!

hz
(eq)52

j z~pxx2pyy!

3r
22

j xpxz2 j ypyz

r
, ~54l!
02120
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h0
(eq)5

j xpyz1 j ypxz1 j zpxy

r
, ~54m!

e i i
(eq)5

9A2

32B
~r 221!pii ,, i P$x,w%, ~54n!

where the second-rank tensorsp andd are given by

pyy[~3pww2pxx!/2, ~55a!

pzz[2~pxx1pyy!, ~55b!

pi l [pil , i , l P$x,y,z%, ~55c!

d[diag~pxx ,pyy ,pzz!. ~55d!

The linearized collision operator can be determined up to
first order inV as the following:

Cag~V!5sa

]%a
(eq)

]%g
2sadag . ~56!

The speeds of longitudinal and transverse waves at both
and high frequencies are determined through the disper
equation of the above linearized collision operator. Our a
is to solve the dispersion equation and obtain the w
speeds behaving asv(0)1gV cosq, wherev(0) is the wave
speed whenV50 ~up to the first order inV), andq is the
angle betweenV and wave vectork. Galilean invariance im-
plies that g51. Isotropy and Galilean invariance (g51)
lead to

A15
1

3 F ~A19B!

B

cT
2

cs
2

29G , ~57a!

A25
1

3 F2~A19B!

A

cT
2

cs
2

23G2A1 , ~57b!

A35
1

3 F92
~A121B!

B

cT
2

cs
2G , ~57c!

A45
1

3 F92
2~A121B!

A

cT
2

cs
2G2A3 , ~57d!

A55
1

72B

cT
2

cs
2

, ~57e!

A65
1

12A

cT
2

cs
2

, ~57f!

A75
3

Bc S cT
2

cs
2

21D , ~57g!
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A85
1

Bb S cT
2

cs
2

21D , ~57h!

A95
1

Aa S cT
2

cs
2

21D . ~57i!

With the equilibria determined, we can show that the mo
is indeed Galilean invariant in thek50 limit, at both low and
high frequencies:

gT
051, gL

051, ~58a!

gT
`51, gL

`51. ~58b!
02120
l

B. Dispersion equation linear inV

With the linearized collision operator determined up to t
first order in V according to Eq.~56! with the nonlinear
equilibria given by Eqs.~54!, the dispersion equation als
depends onV, and so are the roots of the dispersion equ
tion, which determine the speeds and attenuation rate
various waves.

The dispersion equation with linear equilibria is indepe
dent ofV, and is given by Eq.~44! up to first order ink. In
the rotated coordinate system such that wave vectork is
along with one of the axes, Eq.~44! becomes Eq.~48!. The
nonlinear contribution ofC(V) to the dispersion equation i
first order in k and V as well. Under the same coordina
system of Eq.~48!, and if V is parallel to the wave vectork
~along one of the axes!, the contribution from the quadrati
parts of the nonlinear equilibria to the dispersion equati
which is linear inV andk, amounts to the following:
V*
0 0 0 0 0 0 0 0 0

0 ikx1 0 0 0 0 0 0 0

0
8s̃r

9cs
2

ikx2 0 0 0 0 0 0

0 0 0 ikx3 0 0 0 0 0

0 0 0
s̃r

cs
2

ikx4 0 0 0 0

0 0 0 0 0 ikx3 0 0 0

0 0 0 0 0
s̃r

cs
2

ikx4 0 0

0 0 0 0 0 0 0 ik 0

0 0 0 0 0 0 0 0 ik

* , ~59!
t

by
ion

e
ds
at
nu-
ot

per-

elp
where

x1522
4cT

2

3cs
2

, ~60a!

x2511
4cT

2

3cs
2

, ~60b!

x3512
cT

2

cs
2

, ~60c!

x4511
cT

2

cs
2

. ~60d!
Therefore, the determinant of~59! should be added in the lef
hand side of the dispersion equation~48! to consider the
effect due to a finite mean flow velocityV.

Our analysis on Galilean invariance can be verified
either direct numerical solution of the dispersion equat
depending onV @i.e., including the determinant of~59!# or
direct numerical simulation of relaxation of waves in th
LBE model. The numerical results from these two metho
confirm that the LBE model is indeed Galilean invariant
both low and high frequencies. We also find that the atte
ation of waves depends uponV, and this dependence cann
be suppressed even for a small value ofk. ~The analysis ofV
dependence of the attenuation of waves requires the dis
sion equation to include terms up to second order ink.!
Considering models with more discrete velocities might h
solve this problem.
3-11
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V. MACROSCOPIC EQUATIONS

The way to proceed follows closely what has been don
the preceding section. First, to avoid typographic compli
tions, we do not include in the following derivations secon
order derivatives in space that come from the fact that
lattice Boltzmann equation is a finite difference equation
a lattice. As indicated previously, a ‘‘He´non correction’’ at
the end can be a remedy to the problem.

From Eq.~30! we have the following 32 linear equation
for the fluctuation

] twa1(
b,g

Mab
21Mbgeb•“wg5sawa , ~61!

whereuw&[Muf& is the fluctuation of the moments. We a
range the moments in the following order. First, the fo
conserved quantities~density and its flux!, then the five qua-
siconserved quantitiespi j , and then all other moments. Th
remaining 23 modes can be called ‘‘fast’’ modes, similar
the treatment of the Langevin equation in statistical mech
ics. Assuming that the 23 relaxation rates are large, we
perform a successive elimination of the corresponding eq
tions keeping only terms of order 1 and 1/s̃a . This way to
proceed leads to nine equations of motion that include u
second-order derivatives in space. We assume that we
from an initial condition where the ‘‘fast’’ modes have sma
amplitudes and contribute only to order 1/s̃a , and thus will
be neglected.

This process leads to cumbersome expressions. S
simplifications can be achieved using some of the result
the preceding section~relationships betweena, b, andc, and
expressions fors̃28/ s̃30 and s̃24/ s̃27). We shall now presen
the results for various orders in spatial derivatives. Th
results will be considered as the equation of motion of
equivalent macroscopic fluid~EMF! to be distinguished from
the full LBE model.

A. Zeroth- and first-order spatial derivatives

To simplify the analysis, we first change scale for the fi
quasiconserved quantities that we call

Qxx5
16

9~417c11c2!
pxx , ~62a!

Qww5
16

9~417c11c2!
pww , ~62b!

Qil 5
8

423c12c2
pil , iÞ l , i , l P$x,y,z%, ~62c!

and define the elements of a symmetric traceless tensorQ by

Qyy5
1

2
~3Qww2Qxx!, ~63!

Qzz52~Qxx1Qyy!, ~64!
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Qi l [Qil , i , l P$x,y,z%. ~65!

Collecting all terms of order 0 and 1, we get the followin
set of equations:

] tr1“• j50, ~66a!

] t j1“•P50, ~66b!

] tQ1D̂* 52srQ, ~66c!

wherej5ru, and

P[cs
2rI1cT

2Q, ~67a!

Ḋ* [~“ j!1~“ j!†, D̂* [Ḋ* 2
2

3
I“• j. ~67b!

The superscript † represents the transpose operation
second-order tensor. The above equations could be use
determine the long-wavelength modes (k→0) of the EMF.
This would lead to the same conclusions as in the preced
section.

B. Second-order spatial derivatives

We shall consider successively various second-or
terms~second-order spatial derivatives!. The expressions tha
we shall write should be included on the left hand side of
previous equations of order 0 and 1. When only some
these equations are concerned, we shall indicate betwee
rentheses which equation to modify at second order.

1. Bulk viscosity at low-frequency limit

Terms in 1/s2 contribute only to the mass flux equation
of j,

j: z0““• j, ~68!

where the bulk viscosity at low-frequency limit,z0, is given
by Eq.~43!. The above term appears in the right hand side
the equation forj in Eqs.~66!.

2. The modes associated witĥmxx , mww , mxy , myz , mzx‰

These five quantities have the symmetry of a symme
traceless second-rank tensor and contribute only to the
equations

j: ñ0S“2j1
1

3
““• jD , ~69!

where the nonrelaxing shear viscosity at low-frequency lim
is given by

ñ05
1

8
~423c12c228cT

2!S 1

s30
2

1

2D . ~70!
3-12
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3. The other modes of higher order in velocity

These modes usually play no role in an ordinary flu
They have an anisotropic contribution for the EMF unle
care is taken in the choice of the parameters of the mo
First, there are terms that involve the second-order deriva
of the density, their expressions are

Qxx :
2b2

3
~2]xx

2 r2]yy
2 r2]zz

2 r!, ~71a!

Qww :
2b2

3
~]yy

2 r2]zz
2 r!, ~71b!

Qi j : b1] i j
2 r, iÞ j , i , j P$x,y,z%, ~71c!

we shall consider them later. Second, there are terms inv
ing Qi j

Qxx : ~r 11r 2!¹2Qxx13r 2]xx
2 Qxx23r 2~]yy

2 2]zz
2 !Qww

12b5~]xy
2 Qxy22]yz

2 Qyz1]zx
2 Qzx!, ~72a!

Qww : ~r 113r 2!¹2Qww2r 2~]yy
2 2]zz

2 !Qxx23r 2]xx
2 Qww

12b5~]xy
2 Qxy2]zx

2 Qzx!, ~72b!

Qxy : ~3b41b6!¹2Qxy23b3]yz
2 Qzz23b4~]zz

2 Qxy

2]zx
2 Qyz2]yz

2 Qzx!, ~72c!

Qyz : ~3b41b6!¹2Qyz23b3]yz
2 Qxx23b4~]xx

2 Qyz

2]xy
2 Qzx2]xz

2 Qxy!, ~72d!

Qzx : ~3b41b6!¹2Qzx23b3]yz
2 Qyy23b4~]yy

2 Qzx

2]yz
2 Qxy2]yx

2 Qyz!. ~72e!

A number of coefficients (b1 , b2 , b3 , b4 , b5 , b6 , r 1, and
r 2) introduced in Eqs.~71! and ~72! are functions ofr, c1 ,
c2, and ofs6 , s7, ands27 @s24 has been substituted by Eq
~51c!#. Similar to the preceding section, the adjustment
parameters in the above equations can be used to enforc
isotropy of the model.

The minimal isotropy condition is obtained when the
tenuation coefficients of smallk excitations do not depen
upon the orientation ofk. This can be achieved when th
following relations are satisfied:

b152~b21b322b41b5!, ~73a!

r 1523b316b423b51b6 , ~73b!

r 25b32b41b5 . ~73c!

Isotropy can be imposed for the nonpropagating modes. T
leads to

b552b42b3 , ~74!

and simplifies the previous conditions~73! to
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b152b2 , r 15b6 , r 25b4 . ~75!

Finally, longitudinal and transverse modes can be fully d
coupled if

b55b4 . ~76!

When the above condition is satisfied, the correspond
equations involve a term diagonal inQi j proportional tor 1
~which is interpreted as a diffusion coefficient!, a traceless
symmetric tensor forQi j proportional tor 2 that we interpret
as a shear viscous contribution. In addition, there is a c
pling betweenQi j and derivatives of the density proportion
to b2, which is interpreted as a bulk viscous contribution. B
substitutingb2 , b3 , b4 , b5, andb6 in terms ofr 1 andr 2 into
Eqs.~72!, we have

Qxx : ~r 11r 2!¹2Qxx13r 2]xx
2 Qxx23r 2~]yy

2 2]zz
2 !Qww

12r 2~]xy
2 Qxy22]yz

2 Qyz1]zx
2 Qzx!, ~77a!

Qww : ~r 113r 2!¹2Qww2r 2~]yy
2 2]zz

2 !Qxx12r 2~]xy
2 Qxy

2]xx
2 Qww2]zx

2 Qzx!, ~77b!

Qxy : ~r 113r 2!¹2Qxy23r 2]yz
2 Qzz23r 2~]zz

2 Qxy

2]zx
2 Qyz2]zy

2 Qzx!, ~77c!

Qyz : ~r 113r 2!¹2Qyz23r 2]yz
2 Qxx23r 2~]xx

2 Qyz

2]xy
2 Qzx2]xz

2 Qxy!, ~77d!

Qzx : ~r 113r 2!¹2Qzx23r 2]yz
2 Qyy23r 2~]yy

2 Qzx

2]yz
2 Qxy2]yx

2 Qyz!. ~77e!

When the ‘‘full’’ isotropy is satisfied, the attenuation co
efficients of high-frequency modes are given by:

gT
`5

1

2
~3b41b6!1

1

2
ñ0 , ~78a!

gL
`5

2cT
2~b214b41b6!

~3cs
214cT

2!
1

1

2
ñ01

2

3
z0 , ~78b!

g0
`5

@3cs
2~4b41b6!22b1cT

2#

~3cs
214cT

2!
, ~78c!

D05b6 , ~78d!

where g0
` corresponds to the diffusive longitudinal mod

and the contributions togT
` andgL

` from the moments othe
than the stress tensor have been included.
3-13
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The question now is whether it is possible to satisfy
the relationships between the parameters indicated abov
turns out that the present model has a sufficient numbe
free parameters to achieve the full isotropy. The detailed
pressions of the parameters are provided in Appendix
There is still some freedom in the choice of the remain
parameters, this freedom will be used to obtain positive
tenuation coefficients, positive values ofv6, andv7, and to
improve stability of the model for large values ofk.
si
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in
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C. Dispersion equation up to second order ink

The preceding results regarding the attenuation coe
cients of high-frequency modes can also be obtained by
analysis of the dispersion equation up to second order ink.
In the coordinate system where the wave vectork is along
one of the axes, the following 939 determinant should be
included in the left hand side of Eq.~48! for the ‘‘high-
frequency’’ attenuation of various modes:
2k2U 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

8

9
b2 0 ~r 114r 2! 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 ~r 113r 2! 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ~r 113r 2! 0 0

0 0 0 0 0 0 0 r 1 0

0 0 0 0 0 0 0 0 r 1

U , ~79!

and the ‘‘low-frequency’’ contribution to the damping of longitudinal and transverse modes in Eq.~48! is related to the
following 939 determinant:

2k2U0 0 0 0 0 0 0 0 0

0 z0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 S z01
4

3
ñ0D 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 S z01
4

3
ñ0D 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

U , ~80!
a-
he
whereñ0 andz0 are the nonrelaxing shear and bulk visco
ties, given by Eqs.~70! and~43!, respectively. Obviously the
model is isotropic up to second order ink because the dis
persion equation, including Eqs.~79! and ~80!, is indepen-
dent of the orientation ofk.

D. Hydrodynamic equations for equivalent macroscopic fluid

To summarize the preceding discussion, we can comb
Eqs.~66!, ~68!, ~69!, ~71!, and~77! to obtain hydrodynamic
-

e

equations. This leads to the following hydrodynamic equ
tions for the equivalent macroscopic fluid derived from t
LBE model:

] tr1“• j50, ~81a!

] t j1“•~uj!52“•P1 ñ0“
2j1h0““• j, ~81b!
3-14
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] tQ1“•~uQ!1
cT

2

cs
2 F ~“u!†

•Q1Q•~“u!

2
2

3
Tr@Q•~“u!#IG52srQ1r 1“

2Q13r 2S2rD̂

1b1““̂r1S 12
cT

2

cs
2DG1S 12

A

6BDQ2S 12
6B

A DC,

~81c!

whereu5 j/r, P5cs
2rI1cT

2Q, D̂ is the traceless part of th

rate of strain tensorḊ,

D̂[Ḋ2
2

3
~“•u!I, Ḋ[~“u!1~“u!† ~82!

@with (“u) i j [] iuj ] and other tensors are defined as follow

S[~““•Q!1~““•Q!†2
2

3
Tr~““•Q!I, ~83a!

““̂[““2
1

3
“•“I, ~83b!

G[~V•Q!1~V•Q!†2~W•Q!2~W•Q!†, ~83c!

V[~“u!2~“u!†, ~83d!

W[~u“ !2~u“ !† ~83e!

Q[~V2W!* S, ~83f!

S i j [Qi i 2Qj j , i , j P$x,y,z%, ~83g!

C[G* I, ~83h!

the symbol Tr indicates the trace of a tensor, and the sym
* in Eq. ~83f! defines the component-by-component mu
plication operation between the two tensors~i.e., if A
5B* C, thenAi j 5Bi j Ci j ). The parametersb1 , b2 , r 1, and
r 2 are given in Appendix A, and

h05z01
1

3
ñ0 ~84!

is the bulk viscosity of the model.
Although we did not show any detailed expressions

the hydrodynamic equations previously derived using
dispersion equation and the Chapman-Enskog expansio
has been verified that both approaches give exactly the s
relationships between the model parameters. This inclu
the nonlinear convective terms involving products ofu and
“j or “Q leading to Galilean invariance. However, the term
involving products ofj or Q and“u have only been obtaine
from the Chapman-Enskog analysis.

The nonlinear terms ensure Galilean invariance of
model when the average velocity is parallel to the wave v
tor. However, when the velocity is perpendicular to the wa
02120
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vector, the additional terms related toG, Q, andC couple the
different linear hydrodynamic modes in two ways: the lea
ing mode for the mean flow motion acts as a source for
others with an amplitude linear in the average transverse
locity VT; this coupling changes the damping of the leadi
mode with a term quadratic inVT.

The term related toG could probably be removed by se
ting cs5cT with no side effects other than an increased co
pressibility. However, the conditionA56B, under which the
two anisotropic terms related toQ and C would disappear,
cannot be enforced: this requiresr 52 1

3 @cf. Eq. ~A4! in
Appendix A#, a value for which the coupling coefficienta4
in Eq. ~20c! is ill-defined @cf. Eq. ~A3c! in Appendix A#.

Equation ~81c! has been written in a form as close
possible to the usual ‘‘convected model’’@17#. Since the Jau-
mann derivative is the only material derivative that can
obtained for a symmetric traceless tensor, we had expecte
obtain it. It turns out that instead, the left-hand side of E
~81c! looks very similar to the traceless version of the s
called upper-convected Maxwell derivative ofQ, but with
opposite sign for the term@(“u)†

•Q1Q•(“u)#.
We have therefore achieved our goal of finding an EM

that has all the properties of linear viscoelastic fluids. If w
consider the equation for one of the components ofQ, we
find that apart from the term proportional to a second-or
differential operator, it is identical to the equation for a Je
freys fluid. The influence of the second-order differential o
erator could be minimized by working under such conditio
that s̃r@b6k2. This is easily achieved in a real fluid, as it
commonly observed that the ratio of microscopic to mac
scopic time scales can be extremely small. However, in
LBE simulations, such separation of scale, although poss
in principle, is limited by practical considerations includin
the number of nodes of the lattice and the duration of
simulation.

VI. NUMERICAL SOLUTION OF THE DISPERSION
EQUATION AND SIMULATION OF WAVE PROPAGATION

IN THE THREE-DIMENSIONAL LBE VISCOELASTIC
MODEL

The results discussed in Sec. III on the dispersion eq
tion can be verified in two ways:~1! direct computation of
the roots of the full dispersion equation given by Eq.~35!
without any approximation, or~2! direct numerical simula-
tion of the LBE model and determination of how initial sp
tially periodic excitations relax in time. Both types of tes
were conducted to verify our theoretical analysis.

For the direct numerical solution of the dispersion equ
tion of Eq. ~35!, it is noted that the lattice Boltzmann equ
tion is a finite difference equation on a regular lattice, so
solutions are of the formztei (kxax1kyay1kzaz). As shown in the
beginning of this section, the dispersion equation is equi
lent to an eigenvalue problem for which efficient and acc
rate numerical techniques are readily available, regardles
the value ofk. The roots of the dispersion equation$zaua
51, . . . ,32% can be computed as functions ofk, andga(k)
5 ln za(k) is the relaxation rate for the corresponding mo
u%a&. Fork!1, the numerical values ofga corresponding to
3-15
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hydrodynamic modes~i.e., gauk5050) are in excellent
agreement with the analytical results up to second orderk
~provided that the ‘‘He´non correction’’ is adequately consid
ered!. It should be stressed that the direct eigenvalue anal
of the dispersion equation~to numerically computeza) is
very useful for large values ofk, the situation in which the
usual Chapman-Enskog analysis would not work. The eig
value analysis also leads to further ‘‘tuning’’ of the adjustab
parameters of the model in order to improve the numer
stability of the model, i.e., to avoid situations where the r
part of one or moreza becomes positive, which would obv
ously cause the model to be unstable.

The direct simulation of the LBE model, which is th
ultimate aim of the present work, turns out to be quite sim
to perform, and the LBE algorithm is rather fast on a mod
workstation. It is easy to initiate either longitudinal or tran
verse waves of a given wave vectork in an LBE system with
periodic boundary conditions. Fourier analysis of time ser
of density or transverse velocity fluctuations allows one
determine both phase velocities and relaxation coefficie
These quantities are found to be in excellent agreement
the previous theory for systems large enough so that dis
sion effects due to the lattice discreteness can be negle
~i.e., k!1). The relative accuracy for the phase velocit
~both longitudinal and transverse! is better than 0.01% and
that for the attenuation coefficients is better than 0.1%.

When k is no longer small, the results of the simulatio
are in good agreement with the direct numerical computa
of za . Even for unstable situations@i.e., Re(za).0 for some
a], the wave vector of the observed ‘‘diverging’’ mode o
tained from the direct LBE simulation is in good agreeme
with the one leading to largest value of the real part ofza(k).
As this usually occurs for large values ofk, this means that
the lattice Boltzmann algorithm is valid up to large values
k where its accuracy might be questionable.

The illustrate our point, we simulated wave propagat
in the LBE model under various conditions. A system of s
Nx3Ny3Nz with periodic boundaries is used to test t
wave propagations in the three-dimensional lattice Bo
mann model for viscoelastic fluids. The initial condition
the velocity field is a uniform velocityV5(Vx ,Vy ,Vz) plus
a fluctuationdu:

u~x,t50!5V1du•cos~k•x!, ~85!

where the wave vectork5(kx ,ky ,kz) is chosen such that th
periodic boundary conditions are satisfied, i.e.,ki
52np/Ni , for integer n and i P$x,y,z%. As the system
evolves, the spatial Fourier transform of velocityũ(k,t) can
be computed, and the transverse (uT) and longitudinal (uL)
modes~with respect tok) can be determined.

For the case of a zero uniform velocityV5(0,0,0), the
transverse and longitudinal modes behave as follows:

uT~ t !5uT~0!exp~2gTk2t !, ~86a!

uL~ t !5uL~0!cos~vt !exp~2gLk2t !, ~86b!
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wherev5kcs in the low-frequency region andv5kcT in
the high-frequency region along the direction ofk. For a
nonzero uniform velocityV, the transverse components b
have as

uT~ t !5uT~0!cos~k•Vt !exp~2gTk2t !, ~87!

whereas the longitudinal components behave in a more c
plicated fashion as the beat note of two signals oscillating
different frequencies:

uL~ t !5uL~0!$cos@~k•V1v!t#6cos@~k•V2v!t#%

3exp~2gLk2t !. ~88!

The simulation of wave propagations allows us to extr
information of the phase@v and (k•V6v)] and the relax-
ation of amplitudes (gT andgL). The results of phases an
attenuation rates of the wave obtained by the direct num
cal simulations agree very well with the results obtained
directly computing the roots of the dispersion equation
the same value of the wave vector~the relative error is abou
0.01%).

We simulated wave propagations in the three-dimensio
viscoelastic media in both low and high frequency regio
and with and without a uniform velocity of the fluidV. The
system size isNx3Ny3Nz52693332. The wavevector is
chosen be parallel tox axis, i.e.,k5(kx ,0,0), andkx54
32p/Nx . It should be noted that this particular choice ofk
in the simulation does not affect the generality of the ana
sis. The same analysis was also applied to wave vectors
allel to (1,1,0) and (1,1,1). The value of the adjustable
rameters used in the simulations area53, a25220, a35
20.13, r 520.47, s251.95, s351.30, s451.60, s15
51.30, s1951.40, s2451.50, ands2951.90. With the pa-
rameter values given,cs5A22/6'0.7817 andcT'0.5723.
Figures 1 and 2 show dynamic behaviors of various wave
low-frequency and high-frequency regions, corresponding
sr51.95 andsr50, respectively, and with or without a con
stant mean flow velocityV. It is important to note that, in the
present model, the relaxation times for different waves c
be adjusted individually, which is impossible for the LBGK
type models@22,23#. In particular, whensr50, the corre-
sponding relaxation time is infinite, this certainly cannot
achieved by the LBGK-type models@22,23#.

VII. DISCUSSION AND CONCLUSION

In this work we have presented a three-dimensional lat
Boltzmann model for viscoelastic fluids. By carefully an
lyzing the dispersion equation of the model, we can make
model isotropic and Galilean invariant. In addition, the r
maining adjustable coupling coefficients in the model p
vide the freedom to optimize the numerical stability of t
model. The proposed model is capable of simulating lin
viscoelastic fluids in three dimensions and could be rea
extended~by using a more complicated dynamics for th
‘‘internal’’ modes! to reproduce subtle phenomena such
the Senftleben-Beenakker effect in gases~cf. Ref. @26#, Sec.
3.4!, or to simulate nematic liquid crystals, and even bipo
3-16
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fluids under the influence of external magnetic field.
We have also extended the analysis of dispersion equa

of simple fluids@18# to complex fluids. It should be stresse
that the linear dispersion equation analysis is equivalen
the Chapman-Enskog analysis in the sense that both of t
derive the hydrodynamic equations from the lattice Bol
mann equation. However, the analysis of dispersion equa
can also provide linear stability analysis for large wave nu
ber k, which the Chapman-Enskog analysis cannot
whereas the Chapman-Enskog analysis can obtain some
linear terms that cannot be obtained by the linear disper
equation analysis. Therefore, the dispersion equation an
sis, in general, can serve as a powerful tool to study
lattice Boltzmann models complementary to the Chapm
Enskog analysis.

The model constructed in the present work simula
athermalviscoelastic fluids. The energy equation is not co
sidered for the following reasons. First, only nearly inco
pressible fluids are considered here~therefore there are no
shocks in the fluid!. Second, the stability remains a difficu
problem for thermal lattice Boltzmann model, partly due to
finite number of discrete velocities@25# and the linearity of
the relaxation model of the LBE model considered here@27#.
Third, in order to have a correct thermal conductivity, t
relaxation ratess6 ands7 must be related~i.e., the influence
of higher-order moments on the heat transfer! in a way in-
compatible to Eqs.~51a! and ~51b!. This means that the

FIG. 1. Relaxation of longitudinal and transverse waves in
low-frequency regime. The values of adjustable coupling const
in the simulations area53, a25220, a3520.13, and r
520.47, and the values of relaxation parameters ares251.95, s3

51.30, s451.60, s1551.30, s1951.40, s2451.50, s2951.90, and
sr50. The solid, dashed, and dot-dashed lines represent amplit
of one longitudinal and two transverse waves at a particular lo
tion, respectively, normalized byV50.05; ~a! V5(0,0,0) and~b!
V5(0.05,0,0), in lattice units (dx5d t51).

FIG. 2. Relaxation of longitudinal and transverse waves in
high-frequency regime. The values of adjustable parameters in
simulations are the same as in the simulations shown in Fig.~1!,
exceptsr51.95; ~a! V5(0,0,0) and~b! V5(0.05,0,0), in lattice
units (dx5d t51).
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model needs additional degrees of freedom to accommo
this relationship betweens6 and s7. Finally, through the
analysis of the dispersion equation, we found that the lin
stability of the model degrades as the mean flow veloc
increases. This would limit the application of the prese
model to simulate flows with moderate Reynolds number.
resolve all these issues, it is inevitable to have a more c
plex model, and this is left for future study. However, it
worth to mention that one effective alternative to incorpor
thermal effects in the model is to solve the energy equa
independently by using finite difference or other techniqu
@27#. This approach completely decouples the energy eq
tion from the mass and momentum equations and thus
moves the spurious coupling between the energy and s
modes, which instigates the numerical instability in t
energy-conserving LBE models@27#.

There are several directions to extend the present m
in the future. Consideration of one additional scalar quan
would introduce a frequency-dependent bulk viscosity in
model, as is done to characterize dispersion of sound. Add
a nonvanishing trace to the second-order tensor with com
nents$pi j % could be useful to mimic ‘‘elongational’’ effects
Including more traceless tensors may be useful to reprod
nonexponential decay, as is observed in most situation
reality, with more or less complicated behavior if couplin
between the internal modes are adequately considered. I
comes apparent to us that in order to have a lattice Bo
mann model to correctly simulate three-dimensional v
coelastic fluids, the model must possess certain neces
features to satisfy the proper couplings among differ
waves in low- and high-frequency regions, and isotropy a
Galilean invariance. Our experience indicates that some
isting LBE models for viscoelastic fluids in two dimension
@22,23# are unlikely to satisfy the necessary conditions a
may not be easily extended to three dimensions beca
these models do not possess sufficient degrees of freedo
accommodate these necessary conditions.

We also realize that, although the dispersion equat
analysis can be systematically applied to the LBE models
general, the analytical treatment of the dispersion equa
can become intractable algebraically when the number
adjustable parameters becomes large for complex mod
Therefore, it is highly desirable to minimize the number
parameters in an LBE model, and the research is under
by the authors.
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APPENDIX A: PARAMETERS IN THE MODEL

Among the adjustable parameters in the model, there
three coupling coefficients in stress tensors$pi j % and $p i j %:

e
ts

es
a-

e
he
3-17



e

t

re-

ity
of

nge
rs

n

LALLEMAND et al. PHYSICAL REVIEW E 67, 021203 ~2003!
a, b, and c, and there are six coupling coefficients in th
equilibria: a2 , a3 , a4 , c1 , c2, and r. The isotropy of the
high-frequency wave speed (cT) leads to

c5A3b, ~A1a!

B5
~423c12c2!

9~417c11c2!
A, ~A1b!

where

A5
1

~121a2!
, B5

1

~721b2!
. ~A2!

The isotropy of the attenuation coefficients further leads
the following relations between the coupling coefficients:

c15
2~27r 32471r 21197r 155!

3~21r 229!~15r 218r 215!
, ~A3a!

c2522
R1

R2
, ~A3b!

R15~297r 32357r 2289r 185!,

R25~9r 217!~15r 218r 215!,

a45121
~R3a3218R4cs

2!

8~r 21!~21r 229!~3r 11!
, ~A3c!

R35~99r 31201r 221075r 1583!,

R45~243r 32543r 21269r 195!,

b15
~r 13!~R2a316R1cs

2!

12~r 21!R5
S 1

s27
2

1

2D , ~A3d!

R55~243r 32318r 22361r 1340!,

b25b1 /2, ~A3e!

b35b45b55r 2 , ~A3f!

b65r 1 , ~A3g!

r 15
8

~121a2!
S 1

s27
2

1

2D , ~A3h!

r 25cT
2 R6

R5
S 1

s27
2

1

2D , ~A3i!

R65~3r 15!~12r 2217r 117!,

v65
2

3

~3r 22!

~3r 11!
, ~A3j!
02120
o

v752
~r 21!

~r 13!
. ~A3k!

With the above formulas forc1 and c2, the parameterb2

becomes

b25
8a213~3r 11!

~12r !
. ~A4!

Therefore, there are only four coupling coefficients that
main to be determined:a, a2 , a3, andr. The ranges of these
parameters will be determined by the positivities ofb2, cs

2 ,
cT

2 , and of the transport coefficients. In addition, the stabil
of the model must be tested by numerical computations
the eigenvalues of the dispersion equation for a wide ra
of values ofk: this will help choose the relaxation paramete
available (s2 , s3 , s4 , s15, s19, s27, ands28).

APPENDIX B: TRANSPORT COEFFICIENTS OF THE
MODEL

There are twelve relaxation parameters in the model:s2 ,
s3 , s4 , s6 , s7 , sr , s15, s19, s24, s27, s28, ands30. Isotropy
criteria require that four ofsa’s depend on others:

s̃65v6s̃27, ~B1a!

s̃75v7s̃27, ~B1b!

s̃245
1

4
s̃27, ~B1c!

s̃285
b2

6a2
s̃30, ~B1d!

where

1

s̃a

[
1

sa
2

1

2
. ~B2!

The speed of sound wave,cs , transverse wave,cT , and
longitudinal wave,cL , are

cs
25

1

72
~641a2!, ~B3a!

cT
25

3

2

~423c12c2!

~121a2!
5

144

~121a2!

~r 21!R5

~21r 229!R2
,

~B3b!

cL
25

4

3
cT

21cs
2 , ~B3c!

where the expressions forc1 andc2 have been substituted i
cT

2 , andR2 andR5 are given in Eqs.~A3!. The nonrelaxing
shear and bulk viscosities of the model are
3-18
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ñ05
1

12
a2cT

2S 1

s30
2

1

2D , ~B4a!

z05
1

72
~8136c12a2!S 1

s2
2

1

2D . ~B4b!

Attenuation coefficients for transverse, longitudinal, and d
fusive waves in the low frequency limit are:

gT
05cT

2F S 1

sr
2

1

2D1
a2

12S 1

s30
2

1

2D G , ~B5a!

gL
05

1

2
z01

2

3
gT

0 , ~B5b!

and in the high-frequency limit are
tt.

Y.

s.

02120
-

gT
`5

1

2
~r 113r 2!1

1

2
ñ0 , ~B6a!

gL
`5

@2~r 114r 2!1b1#cT
2

~3cs
214cT

2!
1

1

2
ñ01

2

3
z0 , ~B6b!

g0
`5

3~r 114r 2!cs
222b1cT

2

~3cs
214cT

2!
. ~B6c!

The diffusion coefficient is

D05
8

~121a2!
S 1

s27
2

1

2D . ~B7!
tt.
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